

Starting Out withThird
Edition

Programming
Logic &
Design

This page intentionally left blank

Third
Edition

Programming
Logic &
Design

Tony Gaddis
Haywood Community College

Starting Out with

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Kharakozova
Director of Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Emma Snider
Director of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Editor: Pat Brown

Copyright © 2013, 2010, 2008 by Pearson Education, Inc., publishing as Addison-Wesley. All
rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Gaddis, Tony.

Starting out with programming logic and design/Tony Gaddis. –– 3rd ed.
p. cm.

Includes index.
ISBN-13: 978-0-13-280545-2
ISBN-10: 0-13-280545-6

1. Computer programming. I. Title. II. Title: Starting out with programming logic and design.
QA76.6.G315 2013
005.1––dc23 2011044250

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-280545-6
ISBN 13: 978-0-13-280545-2

Manufacturing Buyer: Pat Brown
Art Director: Anthony Gemmellaro
Cover Designer: Joyce Cosentino Wells
Cover Art: © iStockphoto
Media Project Manager: John Cassar
Full-Service Project Management: Jogender

Taneja/Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Bindery: Edwards Brothers
Cover Printer: Lehigh-Phoenix

Color/Hagerstown

Brief Contents

v

Preface xiii

Acknowledgments xxi

About the Author xxiii

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Input, Processing, and Output 27

Chapter 3 Modules 79

Chapter 4 Decision Structures and Boolean Logic 121

Chapter 5 Repetition Structures 169

Chapter 6 Functions 225

Chapter 7 Input Validation 267

Chapter 8 Arrays 281

Chapter 9 Sorting and Searching Arrays 337

Chapter 10 Files 375

Chapter 11 Menu-Driven Programs 429

Chapter 12 Text Processing 475

Chapter 13 Recursion 497

Chapter 14 Object-Oriented Programming 519

Chapter 15 GUI Applications and Event-Driven Programming 565

Appendix A ASCII/Unicode Characters 585

Appendix B Flowchart Symbols 587

Appendix C Pseudocode Reference 589

Appendix D Answers to Checkpoint Questions
(located on the CD that accompanies this book)

Index 601

This page intentionally left blank

Contents

vii

Preface xiii

Acknowledgments xxi

About the Author xxiii

Chapter 1 Introduction to Computers and Programming 1

1.1 Introduction . 1
1.2 Hardware . 2
1.3 How Computers Store Data . 7
1.4 How a Program Works . 12
1.5 Types of Software . 20
Review Questions . 22

Chapter 2 Input, Processing, and Output 27

2.1 Designing a Program . 27
2.2 Output, Input, and Variables . 32
2.3 Variable Assignment and Calculations . 41
IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees 45
IN THE SPOTLIGHT: Calculating a Percentage . 47
IN THE SPOTLIGHT: Calculating an Average . 50
IN THE SPOTLIGHT: Converting a Math Formula to a

Programming Statement . 53
2.4 Variable Declarations and Data Types . 56
2.5 Named Constants . 62
2.6 Hand Tracing a Program . 63
2.7 Documenting a Program . 64
IN THE SPOTLIGHT: Using Named Constants, Style Conventions, and Comments . . 66
2.8 Designing Your First Program .68
Review Questions . 71
Debugging Exercises . 76
Programming Exercises . 77

Chapter 3 Modules 79

3.1 Introduction to Modules . 79
3.2 Defining and Calling a Module . 82

viii Contents

IN THE SPOTLIGHT: Defining and Calling Modules . 88
3.3 Local Variables . 92
3.4 Passing Arguments to Modules . 94
IN THE SPOTLIGHT: Passing an Argument to a Module . 99
IN THE SPOTLIGHT: Passing an Argument by Reference 104
3.5 Global Variables and Global Constants . 108
IN THE SPOTLIGHT: Using Global Constants . 109
Review Questions . 113
Debugging Exercises . 117
Programming Exercises . 117

Chapter 4 Decision Structures and Boolean Logic 121

4.1 Introduction to Decision Structures . 121
IN THE SPOTLIGHT: Using the If-Then Statement . 128
4.2 Dual Alternative Decision Structures . 131
IN THE SPOTLIGHT: Using the If-Then-Else Statement 132
4.3 Comparing Strings . 137
4.4 Nested Decision Structures . 141
IN THE SPOTLIGHT: Multiple Nested Decision Structures 144
4.5 The Case Structure . 148
IN THE SPOTLIGHT: Using a Case Structure . 151
4.6 Logical Operators . 153
4.7 Boolean Variables . 160
Review Questions . 161
Debugging Exercises . 165
Programming Exercises . 166

Chapter 5 Repetition Structures 169

5.1 Introduction to Repetition Structures . 169
5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 170
IN THE SPOTLIGHT: Designing a While Loop . 175
IN THE SPOTLIGHT: Designing a Do-While Loop . 184
5.3 Count-Controlled Loops and the For Statement 189
IN THE SPOTLIGHT: Designing a Count-Controlled Loop

with the For Statement . 197
5.4 Calculating a Running Total . 207
5.5 Sentinels . 211
IN THE SPOTLIGHT: Using a Sentinel . 212
5.6 Nested Loops . 215
Review Questions . 218
Debugging Exercises . 222
Programming Exercises . 222

Contents ix

Chapter 6 Functions 225

6.1 Introduction to Functions: Generating Random Numbers 225
IN THE SPOTLIGHT: Using Random Numbers . 229
IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values 231
6.2 Writing Your Own Functions . 233
IN THE SPOTLIGHT: Modularizing with Functions . 240
6.3 More Library Functions . 248
Review Questions . 259
Debugging Exercises . 261
Programming Exercises . 262

Chapter 7 Input Validation 267

7.1 Garbage In, Garbage Out . 267
7.2 The Input Validation Loop . 268
IN THE SPOTLIGHT: Designing an Input Validation Loop 270
7.3 Defensive Programming . 275
Review Questions . 276
Debugging Exercises . 278
Programming Exercises . 279

Chapter 8 Arrays 281

8.1 Array Basics . 281
IN THE SPOTLIGHT: Using Array Elements in a Math Expression 288
8.2 Sequentially Searching an Array . 295
8.3 Processing the Contents of an Array . 301
IN THE SPOTLIGHT: Processing an Array . 308
8.4 Parallel Arrays . 315
IN THE SPOTLIGHT: Using Parallel Arrays . 316
8.5 Two-Dimensional Arrays . 319
IN THE SPOTLIGHT: Using a Two-Dimensional Array . 323
8.6 Arrays of Three or More Dimensions . 328
Review Questions . 329
Debugging Exercises . 332
Programming Exercises . 333

Chapter 9 Sorting and Searching Arrays 337

9.1 The Bubble Sort Algorithm . 337
IN THE SPOTLIGHT: Using the Bubble Sort Algorithm . 344
9.2 The Selection Sort Algorithm . 351
9.3 The Insertion Sort Algorithm . 357
9.4 The Binary Search Algorithm . 363

x Contents

IN THE SPOTLIGHT: Using the Binary Search Algorithm 367
Review Questions . 369
Debugging Exercise . 373
Programming Exercises . 373

Chapter 10 Files 375

10.1 Introduction to File Input and Output . 375
10.2 Using Loops to Process Files . 387
IN THE SPOTLIGHT: Working with Files . 392
10.3 Using Files and Arrays . 396
10.4 Processing Records . 397
IN THE SPOTLIGHT: Adding and Displaying Records . 402
IN THE SPOTLIGHT: Searching for a Record . 406
IN THE SPOTLIGHT: Modifying Records . 408
IN THE SPOTLIGHT: Deleting Records . 412
10.5 Control Break Logic . 415
IN THE SPOTLIGHT: Using Control Break Logic .417
Review Questions . 423
Debugging Exercise . 426
Programming Exercises . 426

Chapter 11 Menu-Driven Programs 429

11.1 Introduction to Menu-Driven Programs . 429
11.2 Modularizing a Menu-Driven Program . 440
11.3 Using a Loop to Repeat the Menu . 445
IN THE SPOTLIGHT: Designing a Menu-Driven Program 450
11.4 Multiple-Level Menus . 464
Review Questions . 470
Programming Exercises . 472

Chapter 12 Text Processing 475

12.1 Introduction . 475
12.2 Character-by-Character Text Processing . 477
IN THE SPOTLIGHT: Validating a Password . 480
IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers 486
Review Questions . 491
Debugging Exercises . 493
Programming Exercises . 494

Chapter 13 Recursion 497

13.1 Introduction to Recursion . 497
13.2 Problem Solving with Recursion . 500

Contents xi

13.3 Examples of Recursive Algorithms . 504
Review Questions . 514
Programming Exercises . 517

Chapter 14 Object-Oriented Programming 519

14.1 Procedural and Object-Oriented Programming 519
14.2 Classes . 523
14.3 Using the Unified Modeling Language to Design Classes 534
14.4 Finding the Classes and Their Responsibilities in a Problem 537
IN THE SPOTLIGHT: Finding the Classes in a Problem . 537
IN THE SPOTLIGHT: Determining Class Responsibilities 541
14.5 Inheritance . 547
14.6 Polymorphism . 555
Review Questions . 559
Programming Exercises . 563

Chapter 15 GUI Applications and Event-Driven
Programming 565

15.1 Graphical User Interfaces . 565
15.2 Designing the User Interface for a GUI Program 568
IN THE SPOTLIGHT: Designing a Window . 573
15.3 Writing Event Handlers . 575
IN THE SPOTLIGHT: Designing an Event Handler . 578
Review Questions . 580
Programming Exercises . 582

Appendix A ASCII/Unicode Characters 585

Appendix B Flowchart Symbols 587

Appendix C Pseudocode Reference 589

Appendix D Answers to Checkpoint Questions
(located on the CD that accompanies this book)

Index 601

This page intentionally left blank

Welcome to Starting Out with Programming Logic and Design, Third Edition.
This book uses a language-independent approach to teach programming
concepts and problem-solving skills, without assuming any previous pro-

gramming experience. By using easy-to-understand pseudocode, flowcharts, and other
tools, the student learns how to design the logic of programs without the complication
of language syntax.

Fundamental topics such as data types, variables, input, output, control structures,
modules, functions, arrays, and files are covered as well as object-oriented concepts,
GUI development, and event-driven programming. As with all the books in the Starting
Out With . . . series, this text is written in clear, easy-to-understand language that stu-
dents find friendly and inviting.

Each chapter presents a multitude of program design examples. Short examples that
highlight specific programming topics are provided, as well as more involved examples
that focus on problem solving. Each chapter includes at least one In the Spotlight sec-
tion that provides step-by-step analysis of a specific problem and demonstrates a solu-
tion to that problem.

This book is ideal for a programming logic course that is taught as a precursor to a
language-specific introductory programming course, or for the first part of an introduc-
tory programming course in which a specific language is taught.

Changes in the Third Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the
previous edition. Many improvements have been made, which are summarized here:

• Detailed guidance for students designing their first program

A new section titled Designing Your First Program has been added to Chapter 2.
This section takes the student through the process of analyzing a problem and deter-
mining its requirements. The student sees an example of how a program’s input,
processing, and output can be determined, as a prelude to writing pseudocode and
drawing flowcharts.

Also, a new In the Spotlight section has been added to Chapter 2 to show the
student how to examine the steps that are taken to manually perform a calculation
(determining cell phone overage fees), and then convert those steps to a computer
algorithm.

• New Debugging Exercises

A new set of Debugging Exercises have been added to most of the chapters. The
student examines a set of pseudocode algorithms and identifies logical errors.

Preface

xiii

xiv Preface

• Greater consistency between flowcharts and pseudocode

Throughout the book, many of the flowcharts have been revised so they appear
more consistent with the pseudocode.

• Expanded coverage of nested repetition structures

In Chapter 5 the section on nested loops has been expanded with an additional
example.

• Additional VideoNotes for repetition structures

New VideoNotes have been added for the Do-While and For loops in Chapter 5.

• File specification documentation and print spacing charts

File specification documentation and print spacing charts are now discussed in
Chapter 10.

• New pseudocode quick reference guide

A quick reference guide to the pseudocode used in the book has been added as
Appendix C.

• New Programming Language Companions

New language companions have been added for Python 3 and C++. All of the book’s lan-
guage companions are available on the book’s resource site at www.pearsonhighered.
com/gaddis.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a concise and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in
high-level languages.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, data types, variables, and
sequence structures. The student learns to use pseudocode and flowcharts to design simple
programs that read input, perform mathematical operations, and produce screen output.

Chapter 3: Modules

This chapter demonstrates the benefits of modularizing programs and using the top-
down design approach. The student learns to define and call modules, pass arguments
to modules, and use local variables. Hierarchy charts are introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic

In this chapter students explore relational operators and Boolean expressions and are
shown how to control the flow of a program with decision structures. The If-Then,

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface xv

If-Then-Else, and If-Then-Else If statements are covered. Nested decision struc-
tures, logical operators, and the case structure are also discussed.

Chapter 5: Repetition Structures

This chapter shows the student how to use loops to create repetition structures. The
While, Do-While, Do-Until, and For loops are presented. Counters, accumulators,
running totals, and sentinels are also discussed.

Chapter 6: Functions

This chapter begins by discussing common library functions, such as those for generat-
ing random numbers. After learning how to call library functions and how to use val-
ues returned by functions, the student learns how to define and call his or her own
functions.

Chapter 7: Input Validation

This chapter discusses the importance of validating user input. The student learns to
write input validation loops that serve as error traps. Defensive programming and the
importance of anticipating obvious as well as unobvious errors is discussed.

Chapter 8: Arrays

In this chapter the student learns to create and work with one- and two-dimensional
arrays. Many examples of array processing are provided including examples illustrat-
ing how to find the sum, average, and highest and lowest values in an array, and how
to sum the rows, columns, and all elements of a two-dimensional array. Programming
techniques using parallel arrays are also demonstrated.

Chapter 9: Sorting and Searching Arrays

In this chapter the student learns the basics of sorting arrays and searching for data
stored in them. The chapter covers the bubble sort, selection sort, insertion sort, and
binary search algorithms.

Chapter 10: Files

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data, store data as fields and records, and design programs that work
with both files and arrays. The chapter concludes by discussing control break processing.

Chapter 11: Menu-Driven Programs

In this chapter the student learns to design programs that display menus and execute
tasks according to the user’s menu selection. The importance of modularizing a menu-
driven program is also discussed.

Chapter 12: Text Processing

This chapter discusses text processing at a detailed level. Algorithms that step through
the individual characters in a string are discussed, and several common library func-
tions for character and text processing are introduced.

xvi Preface

Chapter 13: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recur-
sive calls is provided, and recursive applications are discussed. Recursive algorithms
for many tasks are presented, such as finding factorials, finding a greatest common
denominator (GCD), summing a range of values in an array, and performing a binary
search. The classic Towers of Hanoi example is also presented.

Chapter 14: Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It
covers the fundamental concepts of classes and objects. Fields, methods, access
specification, constructors, accessors, and mutators are discussed. The student
learns how to model classes with UML and how to find the classes in a particular
problem.

Chapter 15: GUI Applications and Event-Driven Programming

This chapter discusses the basic aspects of designing a GUI application. Building graph-
ical user interfaces with visual design tools (such as Visual Studio® or NetBeans™) is
discussed. The student learns how events work in a GUI application and how to write
event handlers.

Appendix A: ASCII/Unicode Characters

This appendix lists the ASCII character set, which is the same as the first 127 Unicode
character codes.

Appendix B: Flowchart Symbols

This appendix shows the flowchart symbols that are used in this book.

Appendix C: Pseudocode Reference

This appendix provides a quick reference for the pseudocode language that is used in
the book.

Appendix D: Answers to Checkpoint Questions

This appendix provides answers to the Checkpoint questions that appear through-
out the text, and can be downloaded from the CD that accompanies this book or
from the book’s online resource page at www.pearsonhighered.com/gaddis.

Organization of the Text
The text teaches programming logic and design in a step-by-step manner. Each chapter
covers a major set of topics and builds knowledge as students progress through the
book. Although the chapters can be easily taught in their existing sequence, there is
some flexibility. Figure P-1 shows chapter dependencies. Each box represents a chapter
or a group of chapters. A chapter to which an arrow points must be covered before the
chapter from which the arrow originates. The dotted line indicates that only a portion
of Chapter 10 depends on information presented in Chapter 8.

www.pearsonhighered.com/gaddis

Features of the Text
Concept Statements. Each major section of the text starts with a concept state-
ment. This statement concisely summarizes the main point of the section.

Example Programs. Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic. Pseudocode, flow-
charts, and other design tools are used in the example programs.

In the Spotlight. Each chapter has one or more In the
Spotlight case studies that provide detailed, step-by-step analy-
sis of problems, and show the student how to solve them.

VideoNotes. A series of online videos, developed specifically for this book, are avail-
able for viewing at www.pearsonhighered.com/gaddis. Icons appear throughout the
text alerting the student to videos about specific topics.

Preface xvii

Figure P-1 Chapter dependencies

NOTE: Notes appear at several places throughout the text. They are short expla-
nations of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different pro-
gramming or animation problems.

VideoNote

www.pearsonhighered.com/gaddis

xviii Preface

Programming Language Companions. Many of the pseudocode programs
shown in this book have also been written in Java, Python, and Visual Basic. These
programs appear in the programming language companions that are available at
www.pearsonhighered.com/gaddis. Icons appear next to each pseudocode program
that also appears in the language companions.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.

Review Questions. Each chapter presents a thorough and diverse set of Review
Questions and exercises. They include Multiple Choice, True/False, Short Answer, and
Algorithm Workbench.

Debugging Exercises. Most chapters provide a set of debugging exercises in which
the student examines a set of pseudocode algorithms and identifies logical errors.

Programming Exercises. Each chapter offers a pool of Programming Exercises de-
signed to solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following
items are available on the Gaddis Series resource page at www.pearsonhighered.com/
gaddis:

• Access to the book’s companion VideoNotes

An extensive series of online VideoNotes have been developed to accompany
this text. Throughout the book, VideoNote icons alert the student to videos cov-
ering specific topics. Additionally, one programming exercise at the end of each
chapter has an accompanying VideoNote explaining how to develop the prob-
lem’s solution.

• Access to the Language Companions for Python, Java, Visual
Basic, and C++

Programming language companions specifically designed to accompany the Third
Edition of this textbook are available for download. The companions introduce the
Java™, Python®, Visual Basic®, and C++ programming languages, and correspond
on a chapter-by-chapter basis with the textbook. Many of the pseudocode programs
that appear in the textbook also appear in the companions, implemented in a spe-
cific programming language.

WARNING! Warnings caution students about programming techniques or prac-
tices that can lead to malfunctioning programs or lost data.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

Preface xix

• A link to download the RAPTOR flowcharting environment

RAPTOR is a flowchart-based programming environment developed by the US Air
Force Academy Department of Computer Science.

Instructor Resources

The following supplements are available to qualified instructors only:

● Answers to all of the Review Questions
● Solutions for the Programming Exercises
● PowerPoint® presentation slides for each chapter
● Test bank

Visit the Pearson Instructor Resource Center (http://www.pearsonhighered.
com/irc) or send an email to computing@aw.com for information on how to access them.

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc

This page intentionally left blank

Acknowledgments

xxi

There have been many helping hands in the development and publication of this text. I
would like to thank the following faculty reviewers:

Reviewers of the Second Edition

Cherie Aukland
Thomas Nelson Community College

Steve Browning
Freed Hardeman University

Stephen Robert Cheskiewicz
Keystone College and Wilkes University

Ronald J. Harkins
Miami University, OH

Robert S. Overall, III
Nashville State Community College

John Thacher
Gwinnett Technical College

Scott VanSelow
Edison State College

Reviewers of the First Edition

Reni Abraham
Houston Community College

John P. Buerck
Saint Louis University

Jill Canine
Ivy Tech Community College of Indiana

Steven D. Carver
Ivy Tech Community College

Katie Danko
Grand Rapids Community College

Coronicca Oliver
Coastal Georgia Community College

Dale T. Pickett
Baker College of Clinton Township

Tonya Pierce
Ivy Tech Community College

xxii Acknowledgments

Larry Strain
Ivy Tech Community College–Bloomington

Donald Stroup
Ivy Tech Community College

Jim Turney
Austin Community College

I also want to thank everyone at Pearson for making the Starting Out With . . . series
so successful. I have worked so closely with the team at Pearson Addison-Wesley that I
consider them among my closest friends. I am extremely fortunate to have Michael
Hirsch and Matt Goldstein as my editors, and Chelsea Kharakozova as Editorial Assis-
tant. They have guided me through the process of revising this, and many other books.
I am also fortunate to have Yez Alayan as Marketing Manager, and Kathryn Ferranti as
Marketing Coordinator. Their hard work is truly inspiring, and they do a great job get-
ting my books out to the academic community. The production team of Jeff Holcomb
and Pat Brown worked tirelessly to make this book a reality. Thanks to you all!

Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks.
Tony has twenty years of experience teaching computer science courses, primarily at
Haywood Community College. He is a highly acclaimed instructor who was previously
selected as the North Carolina Community College “Teacher of the Year” and has
received the Teaching Excellence award from the National Institute for Staff and Orga-
nizational Development. The Starting Out With . . . series includes introductory books
covering Programming Logic and Design, C++, Java, Microsoft® Visual Basic, C#®,
Python, and Alice, all published by Pearson.

About the Author

xxiii

This page intentionally left blank

Starting Out withThird
Edition

Programming
Logic &
Design

This page intentionally left blank

TOPICS

1.1 Introduction

1.2 Hardware

1.3 How Computers Store Data

1.4 How a Program Works

1.5 Types of Software

Introduction to Computers
and Programming

1.1 Introduction
Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email,
and participating in online classes. At work, people use computers to analyze data,
make presentations, conduct business transactions, communicate with customers and
coworkers, control machines in manufacturing facilities, and many other things. At
home, people use computers for tasks such as paying bills, shopping online, communi-
cating with friends and family, and playing computer games. And don’t forget that cell
phones, iPods®, BlackBerries®, car navigation systems, and many other devices are
computers too. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their
programs tell them to do. A program is a set of instructions that a computer follows to
perform a task. For example, Figure 1-1 shows screens from two commonly used pro-
grams: Microsoft Word and PowerPoint.

C
H

A
P

T
E

R

1

1

2 Chapter 1 Introduction to Computers and Programming

Figure 1-1 Commonly used programs

Programs are commonly referred to as software. Software is essential to a computer be-
cause without software, a computer can do nothing. All of the software that we use to
make our computers useful is created by individuals known as programmers or soft-
ware developers. A programmer, or software developer, is a person with the training
and skills necessary to design, create, and test computer programs. Computer program-
ming is an exciting and rewarding career. Today, you will find programmers working in
business, medicine, government, law enforcement, agriculture, academics, entertain-
ment, and almost every other field.

This book introduces you to the fundamental concepts of computer programming. Be-
fore we begin exploring those concepts, you need to understand a few basic things
about computers and how they work. This chapter will build a solid foundation of
knowledge that you will continually rely on as you study computer science. First, we
will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will discuss
the major types of software that computers use.

1.2 Hardware

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. Most computer systems are made of similar
hardware devices.

The term hardware refers to all of the physical devices, or components, that a com-
puter is made of. A computer is not one single device, but a system of devices that all
work together. Like the different instruments in a symphony orchestra, each device in a
computer plays its own part.

1.2 Hardware 3

Figure 1-2 Typical components of a computer system (all photos © Shutterstock)

If you have ever shopped for a computer, you’ve probably seen sales literature listing
components such as microprocessors, memory, disk drives, video displays, graphics
cards, and so on. Unless you already know a lot about computers, or at least have a
friend who does, understanding what these different components do can be confusing.
As shown in Figure 1-2, a typical computer system consists of the following major
components:

● The central processing unit (CPU)
● Main memory
● Secondary storage devices
● Input devices
● Output devices

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. The CPU is the most important
component in a computer because without it, the computer could not run software.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer (photo courtesy of U.S. Army Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy of Intel
Corporation)

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The
two women in the photo are working with the historic ENIAC computer. The ENIAC,
considered by many to be the world’s first programmable electronic computer, was
built in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine,
which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a
lab technician holding a modern-day microprocessor. In addition to being much
smaller than the old electro-mechanical CPUs in early computers, microprocessors are
also much more powerful.

1.2 Hardware 5

Figure 1-5 Memory chips (photo © Garsya/Shutterstock)

Main Memory
You can think of main memory as the computer’s work area. This is where the com-
puter stores a program while the program is running, as well as the data that the pro-
gram is working with. For example, suppose you are using a word processing program
to write an essay for one of your classes. While you do this, both the word processing
program and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A disk drive
stores data by magnetically encoding it onto a circular disk. Most computers have a
disk drive mounted inside their case. External disk drives, which connect to one of the
computer’s communication ports, are also available. External disk drives can be used
to create backup copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copy-
ing data, and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small floppy disk, which can be
removed from the drive. Floppy disks have many disadvantages, however. They hold
only a small amount of data, are slow to access data, and are sometimes unreliable.
The use of floppy disk drives has declined dramatically in recent years, in favor of

6 Chapter 1 Introduction to Computers and Programming

superior devices such as USB drives. USB drives are small devices that plug into the
computer’s USB (universal serial bus) port, and appear to the system as a disk drive.
These drives do not actually contain a disk, however. They store data in a special type
of memory known as flash memory. USB drives, which are also known as memory
sticks and flash drives, are inexpensive, reliable, and small enough to be carried in your
pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but
is encoded as a series of pits on the disc surface. CD and DVD drives use a laser to de-
tect the pits and thus read the encoded data. Optical discs hold large amounts of data,
and because recordable CD and DVD drives are now commonplace, they are good
mediums for creating backup copies of data.

Input Devices
Input is any data the computer collects from people and from other devices. The com-
ponent that collects the data and sends it to the computer is called an input device.
Common input devices are the keyboard, mouse, scanner, microphone, and digital
camera. Disk drives and optical drives can also be considered input devices because
programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives and CD recorders can also be considered output devices because the system
sends data to them in order to be saved.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its
data while the program is running?

1.6 What part of the computer holds data for long periods of time, even when
there is no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.3 How Computers Store Data 7

1.3 How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte
is only enough memory to store a letter of the alphabet or a small number. In order to
do anything meaningful, a computer has to have lots of bytes. Most computers today
have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that
can be either on or off. Bits aren’t actual “switches,” however, at least not in the con-
ventional sense. In most computer systems, bits are tiny electrical components that
can hold either a positive or a negative charge. Computer scientists think of a posi-
tive charge as a switch in the on position, and a negative charge as a switch in the off
position. Figure 1-6 shows the way that a computer scientist might think of a byte of
memory: as a collection of switches that are each flipped to either the on or off
position.

Figure 1-6 Think of a byte as eight switches

Figure 1-7 Bit patterns for the number 77 and the letter A

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off
pattern that represents the data. For example, the pattern shown on the left in Figure 1-7
shows how the number 77 would be stored in a byte, and the pattern on the right
shows how the letter A would be stored in a byte. In a moment you will see how these
patterns are determined.

OFF

ON

OFF OFFOFF

ON ON ON

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

8 Chapter 1 Introduction to Computers and Programming

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether
the bit is turned on or off, it can represent one of two different values. In computer sys-
tems, a bit that is turned off represents the number 0 and a bit that is turned on repre-
sents the number 1. This corresponds perfectly to the binary numbering system. In the
binary numbering system (or binary, as it is usually called) all numeric values are writ-
ten as sequences of 0s and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth,
as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values
calculated. Starting with the rightmost digit and moving left, the position values are 1,
2, 4, 8, and so forth.

Figure 1-8 The values of binary digits as powers of 2

Figure 1-9 The values of binary digits

To determine the value of a binary number you simply add up the position values of
all the 1s. For example, in the binary number 10011101, the position values of the 1s
are 1, 4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position
values is 157. So, the value of the binary number 10011101 is 157.

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory.
Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in
the off position.

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

1.3 How Computers Store Data 9

Figure 1-10 Determining the value of 10011101

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0.
When all of the bits in a byte are set to 1 (turned on), then the byte holds the largest
value that can be stored in it. The largest value that can be stored in a byte is 1 + 2
+ 4 + 8 + 16 + 32 + 64 + 128 = 255. This limit exists because there are only eight bits
in a byte.

What if you need to store a number larger than 255? The answer is simple: use more
than one byte. For example, suppose we put two bytes together. That gives us 16 bits.
The position values of those 16 bits would be 20, 21, 22, 23, and so forth, up through
215. As shown in Figure 1-12, the maximum value that can be stored in two bytes is
65,535. If you need to store a number larger than this, then more bytes are necessary.

Figure 1-11 The bit pattern for 157

Figure 1-12 Two bytes used for a large number

1 0 0 1 1 1 0 1
 1

 4
 8
 16

128

1 + 4 + 8 + 16 + 128 = 157

128 + 16 + 8 + 4 + 1 = 157

1

128 64 32 16 8 4 2 1
Position
values

1

0

11 1 1

0 0

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 Chapter 1 Introduction to Computers and Programming

TIP : In case you’re feeling overwhelmed by all this, relax! You will not have to
actually convert numbers to binary while programming. Knowing that this process is
taking place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

Storing Characters
Any piece of data that is stored in a computer’s memory must be stored as a binary
number. That includes characters, such as letters and punctuation marks. When a char-
acter is stored in memory, it is first converted to a numeric code. The numeric code is
then stored in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters
in computer memory. Historically, the most important of these coding schemes is
ASCII, which stands for the American Standard Code for Information Interchange.
ASCII is a set of 128 numeric codes that represent the English letters, various punctua-
tion marks, and other characters. For example, the ASCII code for the uppercase letter
A is 65. When you type an uppercase A on your computer keyboard, the number 65 is
stored in memory (as a binary number, of course). This is shown in Figure 1-13.

Figure 1-13 The letter A is stored in memory as the number 65

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67,
and so forth. Appendix A shows all of the ASCII codes and the characters they rep-
resent.

The ASCII character set was developed in the early 1960s, and was eventually adopted
by most all computer manufacturers. ASCII is limited, however, because it defines
codes for only 128 characters. To remedy this, the Unicode character set was developed
in the early 1990s. Unicode is an extensive encoding scheme that is compatible with
ASCII, and can also represent the characters of many of the world’s languages. Today,
Unicode is quickly becoming the standard character set used in the computer industry.

Advanced Number Storage
Earlier you read about numbers and how they are stored in memory. While reading
that section, perhaps it occurred to you that the binary numbering system can be used

65A
00

1

0

1

0 0 0

The music that you play on your CD player, iPod, or MP3 player is also digital. A dig-
ital song is broken into small pieces known as samples. Each sample is converted to a
binary number, which can be stored in memory. The more samples that a song is di-
vided into, the more it sounds like the original music when it is played back. A CD-
quality song is divided into more than 44,000 samples per second!

Checkpoint

1.9 What amount of memory is enough to store a letter of the alphabet or a small
number?

1.10 What do you call a tiny “switch” that can be set to either on or off?

1.11 In what numbering system are all numeric values written as sequences of 0s
and 1s?

1.12 What is the purpose of ASCII?

1.3 How Computers Store Data 11

to represent only integer numbers, beginning with 0. Negative numbers and real num-
bers (such as 3.14159) cannot be represented using the simple binary numbering tech-
nique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do
so they use encoding schemes along with the binary numbering system. Negative num-
bers are encoded using a technique known as two’s complement, and real numbers are
encoded in floating-point notation. You don’t need to know how these encoding
schemes work, only that they are used to convert negative numbers and real numbers
to binary format.

Other Types of Data
Computers are often referred to as digital devices. The term digital can be used to de-
scribe anything that uses binary numbers. Digital data is data that is stored in binary,
and a digital device is any device that works with binary data. In this section we have
discussed how numbers and characters are stored in binary, but computers also work
with many other types of digital data.

For example, consider the pictures that you take with your digital camera. These im-
ages are composed of tiny dots of color known as pixels. (The term pixel stands for
picture element.) As shown in Figure 1-14, each pixel in an image is converted to a nu-
meric code that represents the pixel’s color. The numeric code is stored in memory as a
binary number.

Figure 1-14 A digital image is stored in binary format (photo on the right courtesy of Tony Gaddis/
Pearson Education)

10010101110100010101101

12 Chapter 1 Introduction to Computers and Programming

1.13 What encoding scheme is extensive to represent all the characters of all the lan-
guages in the world?

1.14 What do the terms “digital data” and “digital device” mean?

1.4 How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have
been invented.

Earlier, we stated that the CPU is the most important component in a computer be-
cause it is the part of the computer that runs programs. Sometimes the CPU is called
the “computer’s brain,” and is described as being “smart.” Although these are com-
mon metaphors, you should understand that the CPU is not a brain, and it is not smart.
The CPU is an electronic device that is designed to do specific things. In particular, the
CPU is designed to perform operations such as the following:

● Reading a piece of data from main memory
● Adding two numbers
● Subtracting one number from another number
● Multiplying two numbers
● Dividing one number by another number
● Moving a piece of data from one memory location to another
● Determining whether one value is equal to another value
● And so forth . . .

As you can see from this list, the CPU performs simple operations on pieces of data.
The CPU does nothing on its own, however. It has to be told what to do, and that’s the
purpose of a program. A program is nothing more than a list of instructions that cause
the CPU to perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific
operation. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruc-
tion to perform an operation1. It is written in 0s and 1s because CPUs only understand
instructions that are written in machine language, and machine language instructions
are always written in binary.

A machine language instruction exists for each operation that a CPU is capable of per-
forming. For example, there is an instruction for adding numbers; there is an instruc-
tion for subtracting one number from another; and so forth. The entire set of
instructions that a CPU can execute is known as the CPU’s instruction set.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the micro-
processor to move a value into the CPU.

1.4 How a Program Works 13

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do
anything meaningful. Because the operations that a CPU knows how to perform are so
basic in nature, a meaningful task can be accomplished only if the CPU performs many
operations. For example, if you want your computer to calculate the amount of inter-
est that you will earn from your savings account this year, the CPU will have to per-
form a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands, or even a million or more machine lan-
guage instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When
you install a program on your computer, the program is typically copied to your com-
puter’s disk drive from a CD-ROM, or perhaps downloaded from a Web site.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program you use the mouse to double-click the program’s icon. This
causes the program to be copied from the disk into main memory. Then, the com-
puter’s CPU executes the copy of the program that is in main memory. This process
is illustrated in Figure 1-15.

NOTE : There are several microprocessor companies today that manufacture
CPUs. Some of the more well-known microprocessor companies are Intel, AMD,
and Motorola. If you look carefully at your computer, you might find a tag showing
a logo for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

Figure 1-15 A program is copied into main memory and then executed

When a CPU executes the instructions in a program, it is engaged in a process that is
known as the fetch-decode-execute cycle. This cycle, which consists of three steps, is re-
peated for each instruction in the program. The steps are:

Main memory (RAM)Disk drive CPU

 1011100010100001 10011110

The program is copied
from secondary storage

to main memory.

The CPU executes
the program in
main memory.

14 Chapter 1 Introduction to Computers and Programming

1. Fetch A program is a long sequence of machine language instructions. The first
step of the cycle is to fetch, or read, the next instruction from memory into the
CPU.

2. Decode A machine language instruction is a binary number that represents a
command that tells the CPU to perform an operation. In this step the CPU
decodes the instruction that was just fetched from memory, to determine which
operation it should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

2 The first assembly language was most likely developed in the 1940s at Cambridge University
for use with a historical computer known as the EDSAC.

Figure 1-16 The fetch-decode-execute cycle

From Machine Language to Assembly Language
Computers can only execute programs that are written in machine language. As previ-
ously mentioned, a program can have thousands, or even a million or more binary in-
structions, and writing such a program would be very tedious and time consuming.
Programming in machine language would also be very difficult because putting a 0 or
a 1 in the wrong place will cause an error.

Although a computer’s CPU only understands machine language, it is impractical for
people to write programs in machine language. For this reason, assembly language was
created in the early days of computing2 as an alternative to machine language. Instead
of using binary numbers for instructions, assembly language uses short words that
are known as mnemonics. For example, in assembly language, the mnemonic add
typically means to add numbers, mul typically means to multiply numbers, and mov
typically means to move a value to a location in memory. When a programmer uses
assembly language to write a program, he or she can write short mnemonics instead
of binary numbers.

CPU

Main memory
(RAM)

10111000
10100001

10011110
00011010
11011100

and so forth...

10100001

1 Fetch the next instruction
in the program.

3 Execute the instruction
(perform the operation).

Decode the instruction
to determine which
operation to perform.

2

1.4 How a Program Works 15

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process
is shown in Figure 1-17. The machine language program that is created by the assem-
bler can then be executed by the CPU.

High-Level Languages
Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct sub-
stitute for machine language, and like machine language, it requires that you know a
lot about the CPU. Assembly language also requires that you write a large number of
instructions for even the simplest program. Because assembly language is so close in
nature to machine language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level lan-
guages began to appear. A high-level language allows you to create powerful and com-
plex programs without knowing how the CPU works, and without writing large
numbers of low-level instructions. In addition, most high-level languages use words that
are easy to understand. For example, if a programmer were using COBOL (which was
one of the early high-level languages created in the 1950s), he or she would write the fol-
lowing instruction to display the message “Hello world” on the computer screen:

Display "Hello world"

Doing the same thing in assembly language would require several instructions, and an
intimate knowledge of how the CPU interacts with the computer’s video circuitry. As
you can see from this example, high-level languages allow programmers to concentrate
on the tasks they want to perform with their programs rather than the details of how
the CPU will execute those programs.

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Figure 1-17 An assembler translates an assembly language program to a machine
language program

mov eax, Z
add eax, 2
mov Y, eax

and so forth...

Assembler
10111000

10100001

10011110

and so forth...

Assembly language
program

Machine language
program

16 Chapter 1 Introduction to Computers and Programming

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists
several of the more well-known languages. If you are working toward a degree in
computer science or a related field, you are likely to study one or more of these lan-
guages.

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historical figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose
language that was originally designed in the early 1960s to be simple
enough for beginners to learn. Today, there are many different versions of
BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It
was designed in the 1950s for performing complex mathematical
calculations.

COBOL Common Business-Oriented Language was created in the 1950s, and was
designed for business applications.

Pascal Pascal was created in 1970, and was originally designed for teaching
programming. The language was named in honor of the mathematician,
physicist, and philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose
languages developed at Bell Laboratories. The C language was created in
1972 and the C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the
year 2000 for developing applications based on the Microsoft .NET
platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to
develop programs that run on a single computer or over the Internet from
a Web server.

JavaScript™ JavaScript, created in the 1990s, can be used in Web pages. Despite its
name, JavaScript is not related to Java.

Python Python is a general-purpose language created in the early 1990s. It has
become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is
increasingly becoming a popular language for programs that run on Web
servers.

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming
language and software development environment that allows programmers
to create Windows®-based applications quickly. VB was originally created
in the early 1990s.

1.4 How a Program Works 17

Each high-level language has its own set of words that the programmer must learn in
order to use the language. The words that make up a high-level programming language
are known as key words or reserved words. Each key word has a specific meaning, and
cannot be used for any other purpose. You previously saw an example of a COBOL
statement that uses the key word display to print a message on the screen. In the
Python language the word print serves the same purpose.

In addition to key words, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In Java, as well as most other languages, the + sign is an operator
that adds two numbers. The following adds 12 and 75:

12 + 75

In addition to key words and operators, each language also has it own syntax, which is
a set of rules that must be strictly followed when writing a program. The syntax rules
dictate how key words, operators, and various punctuation characters must be used in
a program. When you are learning a programming language, you must learn the syntax
rules for that particular language.

The individual instructions that you use to write a program in a high-level program-
ming language are called statements. A programming statement can consist of key
words, operators, punctuation, and other allowable programming elements, arranged
in the proper sequence to perform an operation.

NOTE: Human languages also have syntax rules. Do you remember when you
took your first English class, and you learned all those rules about infinitives, in-
direct objects, clauses, and so forth? You were learning the syntax of the English
language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortu-
nately, computers do not have this ability. If even a single syntax error appears in a
program, the program cannot be executed.

Compilers and Interpreters
Because the CPU understands only machine language instructions, programs that are
written in a high-level language must be translated into machine language. Once a pro-
gram has been written in a high-level language, the programmer will use a compiler or
an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any
time it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and
executing are two different processes.

Compiling and
Executing a
Program

VideoNote

18 Chapter 1 Introduction to Computers and Programming

An interpreter is a program that both translates and executes the instructions in a high-
level language program. As the interpreter reads each individual instruction in the pro-
gram, it converts it to a machine language instruction and then immediately executes it.
This process repeats for every instruction in the program. This process is illustrated in
Figure 1-19. Because interpreters combine translation and execution, they typically do
not create separate machine language programs.

Figure 1-18 Compiling a high-level program and executing it

NOTE: Programs that are compiled generally execute faster than programs that
are interpreted because a compiled program is already translated entirely to machine
language when it is executed. A program that is interpreted must be translated at the
time it is executed.

The statements that a programmer writes in a high-level language are called source
code, or simply code. Typically, the programmer types a program’s code into a text

Figure 1-19 Executing a high-level program with an interpreter

Display"Hello
Earthling"

and so forth...

High-level language
program

Compiler
10111000

10100001

10011110
and so forth...

Machine language
program

10111000

10100001

10011110
and so forth...

Machine language
program CPU

The compiler is used
to translate the high-level
language program to a
machine language program.

1

The machine language
program can be executed
at any time, without using
the compiler.

2

The interpreter translates each high-level instruction to
its equivalent machine language instruction and

immediately executes it.

Display"Hello
Earthling"

and so forth...

High-level language
program

Interpreter 10100001

Machine language
instruction

CPU

This process is repeated for each high-level instruction.

1.4 How a Program Works 19

editor and then saves the code in a file on the computer’s disk. Next, the programmer
uses a compiler to translate the code into a machine language program, or an inter-
preter to translate and execute the code. If the code contains a syntax error, however, it
cannot be translated. A syntax error is a mistake such as a misspelled key word, a miss-
ing punctuation character, or the incorrect use of an operator. When this happens the
compiler or interpreter displays an error message indicating that the program contains
a syntax error. The programmer corrects the error and then attempts once again to
translate the program.

Integrated Development Environments
Although you can use a simple text editor such as Notepad (which is part of the Win-
dows operating system) to write a program, most programmers use specialized soft-
ware packages called integrated development environments or IDEs. Most IDEs
combine the following programs into one software package:

● A text editor that has specialized features for writing statements in a high-level
programming language

● A compiler or interpreter
● Useful tools for testing programs and locating errors

Figure 1-20 shows a screen from Microsoft Visual Studio, a popular IDE for developing
programs in the C++, Visual Basic, and C# languages. Eclipse™, NetBeans, Dev-C++,
and jGRASP™ are a few other popular IDEs.

Figure 1-20 An integrated development environment

20 Chapter 1 Introduction to Computers and Programming

Checkpoint

1.15 A CPU understands instructions that are written only in what language?

1.16 A program has to be copied into what type of memory each time the CPU
executes it?

1.17 When a CPU executes the instructions in a program, it is engaged in what
process?

1.18 What is assembly language?

1.19 What type of programming language allows you to create powerful and
complex programs without knowing how the CPU works?

1.20 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

1.21 What do you call a program that translates a high-level language program into
a separate machine language program?

1.22 What do you call a program that both translates and executes the instructions
in a high-level language program?

1.23 What type of mistake is usually caused by a misspelled key word, a missing
punctuation character, or the incorrect use of an operator?

1.5 Types of Software

CONCEPT: Programs generally fall into one of two categories: system software or
application software. System software is the set of programs that con-
trol or enhance the operation of a computer. Application software
makes a computer useful for everyday tasks.

If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under
the control of software. There are two general categories of software: system software
and application software. Most computer programs clearly fit into one of these two
categories. Let’s take a closer look at each.

System Software
The programs that control and manage the basic operations of a computer are gener-
ally referred to as system software. System software typically includes the following
types of programs:

Operating Systems. An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the com-
puter’s hardware, manages all of the devices connected to the computer, allows
data to be saved to and retrieved from storage devices, and allows other programs

1.5 Types of Software 21

to run on the computer. Figure 1-21 shows screens from four popular operating
systems: Windows, iOS, Mac OS®, and Linux®.

Utility Programs. A utility program performs a specialized task that enhances the
computer’s operation or safeguards data. Examples of utility programs are virus
scanners, file compression programs, and data backup programs.

Software Development Tools. Software development tools are the programs that
programmers use to create, modify, and test software. Assemblers, compilers, and
interpreters are examples of programs that fall into this category.

Figure 1-21 Screens from the Windows, iOS, Mac OS, and Linux operating systems

Windows

Mac OS Linux

iOS

Application Software
Programs that make a computer useful for everyday tasks are known as application
software. These are the programs that people normally spend most of their time run-
ning on their computers. Figure 1-1, at the beginning of this chapter, shows screens
from two commonly used applications—Microsoft Word, a word processing pro-
gram, and Microsoft PowerPoint, a presentation program. Some other examples of
application software are spreadsheet programs, email programs, Web browsers, and
game programs.

Checkpoint

1.24 What fundamental set of programs controls the internal operations of the com-
puter’s hardware?

1.25 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.26 Word processing programs, spreadsheet programs, email programs, Web
browsers, and game programs belong to what category of software?

Review Questions

Multiple Choice

1. A(n) __________ is a set of instructions that a computer follows to perform a task.

a. compiler
b. program
c. interpreter
d. programming language

2. The physical devices that a computer is made of are referred to as __________.

a. hardware
b. software
c. the operating system
d. tools

3. The part of a computer that runs programs is called __________.

a. RAM
b. secondary storage
c. main memory
d. the CPU

4. Today, CPUs are small chips known as __________.

a. ENIACs
b. microprocessors
c. memory chips
d. operating systems

5. The computer stores a program while the program is running, as well as the data
that the program is working with, in __________.

a. secondary storage
b. the CPU
c. main memory
d. the microprocessor

22 Chapter 1 Introduction to Computers and Programming

Review Questions 23

6. This is a volatile type of memory that is used only for temporary storage while a
program is running.

a. RAM
b. secondary storage
c. the disk drive
d. the USB drive

7. A type of memory that can hold data for long periods of time—even when there is
no power to the computer––is called __________.

a. RAM
b. main memory
c. secondary storage
d. CPU storage

8. A component that collects data from people or other devices and sends it to the
computer is called __________.

a. an output device
b. an input device
c. a secondary storage device
d. main memory

9. A video display is a(n) __________.

a. output device
b. input device
c. secondary storage device
d. main memory

10. A __________ is enough memory to store a letter of the alphabet or a small
number.

a. byte
b. bit
c. switch
d. transistor

11. A byte is made up of eight __________.

a. CPUs
b. instructions
c. variables
d. bits

12. In a(n) __________ numbering system, all numeric values are written as sequences
of 0s and 1s.

a. hexadecimal
b. binary
c. octal
d. decimal

24 Chapter 1 Introduction to Computers and Programming

13. A bit that is turned off represents the following value: __________.

a. 1
b. –1
c. 0
d. “no”

14. A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is __________.

a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

15. An extensive encoding scheme that can represent the characters of many of the
languages in the world is __________.

a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

16. Negative numbers are encoded using the __________ technique.

a. two’s complement
b. floating-point
c. ASCII
d. Unicode

17. Real numbers are encoded using the __________ technique.

a. two’s complement
b. floating-point
c. ASCII
d. Unicode

18. The tiny dots of color that digital images are composed of are called __________.

a. bits
b. bytes
c. color packets
d. pixels

19. If you were to look at a machine language program, you would see __________.

a. Java code
b. a stream of binary numbers
c. English words
d. circuits

20. In the __________ part of the fetch-decode-execute cycle, the CPU determines
which operation it should perform.

a. fetch
b. decode
c. execute
d. immediately after the instruction is executed

Review Questions 25

21. Computers can only execute programs that are written in __________.

a. Java
b. assembly language
c. machine language
d. C++

22. The __________ translates an assembly language program to a machine language
program.

a. assembler
b. compiler
c. translator
d. interpreter

23. The words that make up a high-level programming language are called
__________.

a. binary instructions
b. mnemonics
c. commands
d. key words

24. The rules that must be followed when writing a program are called __________.

a. syntax
b. punctuation
c. key words
d. operators

25. A(n) __________ program translates a high-level language program into a separate
machine language program.

a. assembler
b. compiler
c. translator
d. utility

True or False

1. Today, CPUs are huge devices made of electrical and mechanical components
such as vacuum tubes and switches.

2. Main memory is also known as RAM.

3. Any piece of data that is stored in a computer’s memory must be stored as a
binary number.

4. Images, like the ones you make with your digital camera, cannot be stored as
binary numbers.

5. Machine language is the only language that a CPU understands.

6. Assembly language is considered a high-level language.

7. An interpreter is a program that both translates and executes the instructions in
a high-level language program.

26 Chapter 1 Introduction to Computers and Programming

8. A syntax error does not prevent a program from being compiled and executed.

9. Windows Vista, Linux, UNIX®, and Mac OS X are all examples of application
software.

10. Word processing programs, spreadsheet programs, email programs, Web browsers,
and games are all examples of utility programs.

Short Answer

1. Why is the CPU the most important component in a computer?

2. What number does a bit that is turned on represent? What number does a bit that
is turned off represent?

3. What would you call a device that works with binary data?

4. What are the words that make up a high-level programming language called?

5. What are the short words that are used in assembly language called?

6. What is the difference between a compiler and an interpreter?

7. What type of software controls the internal operations of the computer’s
hardware?

Exercises

1. Use what you’ve learned about the binary numbering system in this chapter to con-
vert the following decimal numbers to binary:

11
65
100
255

2. Use what you’ve learned about the binary numbering system in this chapter to
convert the following binary numbers to decimal:
1101
1000

101011

3. Look at the ASCII chart in Appendix A on the CD that accompanies this book
and determine the codes for each letter of your first name.

4. Use the Web to research the history of the BASIC, C++, Java, and Python pro-
gramming languages, and answer the following questions:
● Who was the creator of each of these languages?
● When was each of these languages created?
● Was there a specific motivation behind the creation of these languages? If so,

what was it?

Converting Binary
to Decimal

VideoNote

TOPICS

2.1 Designing a Program

2.2 Output, Input, and Variables

2.3 Variable Assignment and Calculations

2.4 Variable Declarations and Data Types

2.5 Named Constants

2.6 Hand Tracing a Program

2.7 Documenting a Program

2.8 Designing Your First Program

Input, Processing,
and Output

2.1 Designing a Program

CONCEPT: Programs must be carefully designed before they are written. During
the design process, programmers use tools such as pseudocode and
flowcharts to create models of programs.

In Chapter 1 you learned that programmers typically use high-level languages to
write programs. However, all professional programmers will tell you that a program
should be carefully designed before the code is actually written. When programmers
begin a new project, they never jump right in and start writing code as the first step.
They begin by creating a design of the program.

After designing the program, the programmer begins writing code in a high-level lan-
guage. Recall from Chapter 1 that each language has its own rules, known as syntax,
that must be followed when writing a program. A language’s syntax rules dictate
things such as how key words, operators, and punctuation characters can be used. A
syntax error occurs if the programmer violates any of these rules.

If the program contains a syntax error, or even a simple mistake such as a misspelled
key word, the compiler or interpreter will display an error message indicating what
the error is. Virtually all code contains syntax errors when it is first written, so the
programmer will typically spend some time correcting these. Once all of the syntax
errors and simple typing mistakes have been corrected, the program can be compiled
and translated into a machine language program (or executed by an interpreter,
depending on the language being used).

C
H

A
P

T
E

R

2

27

28 Chapter 2 Input, Processing, and Output

Once the code is in an executable form, it is then tested to determine whether any
logic errors exist. A logic error is a mistake that does not prevent the program from
running, but causes it to produce incorrect results. (Mathematical mistakes are
common causes of logic errors.)

If there are logic errors, the programmer debugs the code. This means that the pro-
grammer finds and corrects the code that is causing the error. Sometimes during
this process, the programmer discovers that the original design must be changed. This
entire process, which is known as the program development cycle, is repeated until
no errors can be found in the program. Figure 2-1 shows the steps in the process.

Debug the
code

Design the
program

Write the
code

Correct
syntax errors

Test the
executable

code

Figure 2-1 The program development cycle

This book focuses entirely on the first step of the program development cycle: designing
the program. The process of designing a program is arguably the most important part of
the cycle. You can think of a program’s design as its foundation. If you build a house on a
poorly constructed foundation, eventually you will find yourself doing a lot of work to fix
the house! A program’s design should be viewed no differently. If your program is designed
poorly, eventually you will find yourself doing a lot of work to fix the program.

Designing a Program
The process of designing a program can be summarized in the following two steps:

1. Understand the task that the program is to perform.
2. Determine the steps that must be taken to perform the task.

Let’s take a closer look at each of these steps.

Understand the Task That the Program Is to Perform

It is essential that you understand what a program is supposed to do before you can
determine the steps that the program will perform. Typically, a professional program-
mer gains this understanding by working directly with the customer. We use the term
customer to describe the person, group, or organization that is asking you to write a
program. This could be a customer in the traditional sense of the word, meaning
someone who is paying you to write a program. It could also be your boss, or the
manager of a department within your company. Regardless of who it is, the customer
will be relying on your program to perform an important task.

To get a sense of what a program is supposed to do, the programmer usually inter-
views the customer. During the interview, the customer will describe the task that the
program should perform, and the programmer will ask questions to uncover as many
details as possible about the task. A follow-up interview is usually needed because
customers rarely mention everything they want during the initial meeting, and pro-
grammers often think of additional questions.

The programmer studies the information that was gathered from the customer dur-
ing the interviews and creates a list of different software requirements. A software

2.1 Designing a Program 29

requirement is simply a single function that the program must perform in order to
satisfy the customer. Once the customer agrees that the list of requirements is com-
plete, the programmer can move to the next phase.

TIP : If you choose to become a professional software developer, your customer
will be anyone who asks you to write programs as part of your job. As long as you
are a student, however, your customer is your instructor! In every programming
class that you will take, it’s practically guaranteed that your instructor will assign
programming problems for you to complete. For your academic success, make sure
that you understand your instructor’s requirements for those assignments and write
your programs accordingly.

Determine the Steps That Must Be Taken to Perform the Task

Once you understand the task that the program will perform, you begin by breaking
down the task into a series of steps. This is similar to the way you would break down
a task into a series of steps that another person can follow. For example, suppose your
little sister asks you how to boil water. Assuming she is old enough to be trusted
around the stove, you might break down that task into a series of steps as follows:

1. Pour the desired amount of water into a pot.
2. Put the pot on a stove burner.
3. Turn the burner to high.
4. Watch the water until you see large bubbles rapidly rising. When this happens,

the water is boiling.

This is an example of an algorithm, which is a set of well-defined logical steps that
must be taken to perform a task. Notice that the steps in this algorithm are sequen-
tially ordered. Step 1 should be performed before Step 2, and so on. If your little sis-
ter follows these steps exactly as they appear, and in the correct order, she should be
able to boil water successfully.

A programmer breaks down the task that a program must perform in a similar way.
An algorithm is created, which lists all of the logical steps that must be taken. For
example, suppose you have been asked to write a program to calculate and display the
gross pay for an hourly paid employee. Here are the steps that you would take:

1. Get the number of hours worked.
2. Get the hourly pay rate.
3. Multiply the number of hours worked by the hourly pay rate.
4. Display the result of the calculation that was performed in Step 3.

Of course, this algorithm isn’t ready to be executed on the computer. The steps in this
list have to be translated into code. Programmers commonly use two tools to help them
accomplish this: pseudocode and flowcharts. Let’s look at each of these in more detail.

Pseudocode
Recall from Chapter 1 that each programming language has strict rules, known as syntax,
that the programmer must follow when writing a program. If the programmer writes code

30 Chapter 2 Input, Processing, and Output

that violates these rules, a syntax error will result and the program cannot be compiled or
executed. When this happens, the programmer has to locate the error and correct it.

Because small mistakes like misspelled words and forgotten punctuation characters
can cause syntax errors, programmers have to be mindful of such small details when
writing code. For this reason, programmers find it helpful to write their programs in
pseudocode (pronounced “sue doe code”) before they write it in the actual code of a
programming language.

The word pseudo means fake, so pseudocode is fake code. It is an informal language
that has no syntax rules, and is not meant to be compiled or executed. Instead, program-
mers use pseudocode to create models, or “mock-ups” of programs. Because program-
mers don’t have to worry about syntax errors while writing pseudocode, they can focus
all of their attention on the program’s design. Once a satisfactory design has been cre-
ated with pseudocode, the pseudocode can be translated directly to actual code.

Here is an example of how you might write pseudocode for the pay calculating
program that we discussed earlier:

Display "Enter the number of hours the employee worked."
Input hours
Display "Enter the employee's hourly pay rate."
Input payRate
Set grossPay = hours * payRate
Display "The employee's gross pay is $", grossPay

Each statement in the pseudocode represents an operation that can be performed in
any high-level language. For example, all languages provide a way to display messages
on the screen, read input that is typed on the keyboard, and perform mathematical cal-
culations. For now, don’t worry about the details of this particular pseudocode pro-
gram. As you progress through this chapter you will learn more about each of the
statements that you see here.

NOTE: As you read the examples in this book, keep in mind that pseudocode is
not an actual programming language. It is a generic way to write the statements of
an algorithm, without worrying about syntax rules. If you mistakenly write
pseudocode into an editor for an actual programming language, such as Python or
Visual Basic, errors will result.

Flowcharts
Flowcharting is another tool that programmers use to design programs. A flowchart is
a diagram that graphically depicts the steps that take place in a program. Figure 2-2
shows how you might create a flowchart for the pay calculating program.

Notice that there are three types of symbols in the flowchart: ovals, parallelograms,
and rectangles. The ovals, which appear at the top and bottom of the flowchart, are
called terminal symbols. The Start terminal symbol marks the program’s starting point
and the End terminal symbol marks the program’s ending point.

Between the terminal symbols are parallelograms, which are used for both input symbols
and output symbols, and rectangles, which are called processing symbols. Each of these
symbols represents a step in the program. The symbols are connected by arrows that

2.1 Designing a Program 31

Figure 2-2 Flowchart for the pay calculating program

represent the “flow” of the program. To step through the symbols in the proper order, you
begin at the Start terminal and follow the arrows until you reach the End terminal.
Throughout this chapter we will look at each of these symbols in greater detail. For your
reference, Appendix B summarizes all of the flowchart symbols that we use in this book.

There are a number of different ways that you can draw flowcharts, and your instruc-
tor will most likely tell you the way that he or she prefers you to draw them in class.
Perhaps the simplest and least expensive way is to simply sketch the flowchart by hand
with pencil and paper. If you need to make your hand-drawn flowcharts look more
professional, you can visit your local office supply store (or possibly your cam-
pus bookstore) and purchase a flowchart template, which is a small plastic sheet that
has the flowchart symbols cut into it. You can use the template to trace the symbols
onto a piece of paper.

The disadvantage to drawing flowcharts by hand is that mistakes have to be man-
ually erased, and in many cases, require that the entire page be redrawn. A more effi-
cient and professional way to create flowcharts is to use software. There are several
specialized software packages available that allow you to create flowcharts.

End

Start

Set grossPay =
hours * payRate

Display "Enter the
number of hours the
employee worked."

Input hours

Display "Enter the
employee's hourly pay rate."

Input payRate

Display "The employee's
gross pay is $",

grossPay

32 Chapter 2 Input, Processing, and Output

Checkpoint

2.1 Who is a programmer’s customer?

2.2 What is a software requirement?

2.3 What is an algorithm?

2.4 What is pseudocode?

2.5 What is a flowchart?

2.6 What are each of the following symbols in a flowchart?

● Oval
● Parallelogram
● Rectangle

2.2 Output, Input, and Variables

CONCEPT: Output is data that is generated and displayed by the program. Input is
data that the program receives. When a program receives data, it stores
it in variables, which are named storage locations in memory.

Computer programs typically perform the following three-step process:

1. Input is received.
2. Some process is performed on the input.
3. Output is produced.

Input is any data that the program receives while it is running. One common form of
input is data that is typed on the keyboard. Once input is received, some process, such
as a mathematical calculation, is usually performed on it. The results of the process are
then sent out of the program as output.

Figure 2-3 illustrates these three steps in the pay calculating program that we discussed
earlier. The number of hours worked and the hourly pay rate are provided as input.

Hours worked

Hourly pay rate

Gross pay

Input Process Output

Multiply Hours Worked
by Hourly Pay Rate

Figure 2-3 The input, processing, and output of the pay calculating program

NOTE: Flowcharting symbols and techniques can vary from one book to another,
or from one software package to another. If you are using specialized software to
draw flowcharts, you might notice slight differences between some of the symbols
that it uses, compared to some of the symbols used in this book.

2.2 Output, Input, and Variables 33

The program processes this data by multiplying the hours worked by the hourly pay
rate. The results of the calculation are then displayed on the screen as output.

In this section, you will look at some simple programs that perform two of these steps:
output and input. In the next section, we will discuss how to process data.

Displaying Screen Output
Perhaps the most fundamental thing that you can do in a program is to display a mes-
sage on the computer screen. As previously mentioned, all high-level languages pro-
vide a way to display screen output. In this book, we use the word Display to write
pseudocode statements for displaying output on the screen. Here is an example:

Display "Hello world"

The purpose of this statement is to display the message Hello world on the screen.
Notice that after the word Display, we have written Hello world inside quotation
marks. The quotation marks are not to be displayed. They simply mark the beginning
and the end of the text that we wish to display.

Suppose your instructor tells you to write a pseudocode program that displays your
name and address on the computer screen. The pseudocode shown in Program 2-1 is
an example of such a program.

Program 2-1

Display "Kate Austen"
Display "1234 Walnut Street"
Display "Asheville, NC 28899"

It is important for you to understand that the statements in this program execute in
the order that they appear, from the top of the program to the bottom. This is shown
in Figure 2-4. If you translated this pseudocode into an actual program and ran it,
the first statement would execute, followed by the second statement, and followed by
the third statement. If you try to visualize the way this program’s output would
appear on the screen, you should imagine something like that shown in Figure 2-5.
Each Display statement produces a line of output.

Display "Kate Austen"
Display "1234 Walnut Street"
Display "Asheville, NC 28899"

1

2

3

Figure 2-4 The statements execute in order

NOTE: Although this book uses the word Display for an instruction that dis-
plays screen output, some programmers use other words for this purpose. For
example, some programmers use the word Print, and others use the word Write.
Pseudocode has no rules that dictate the words that you may or may not use.

34 Chapter 2 Input, Processing, and Output

End

Start

Display "Kate Austen"

Display "1234 Walnut
Street"

Display "Asheville, NC
28899"

Figure 2-6 Flowchart for Program 2-1

Figure 2-6 shows the way you would draw a flowchart for this program. Notice that
between the Start and End terminal symbols there are three parallelograms. A paral-
lelogram can be either an output symbol or an input symbol. In this program, all three
parallelograms are output symbols. There is one for each of the Display statements.

Sequence Structures
It was mentioned earlier that the statements in Program 2-1 execute in the order that
they appear, from the top of the program to the bottom. A set of statements that execute

Kate Austen
1234 Walnut Street
Asheville, NC 28899

Figure 2-5 Output of Program 2-1

2.2 Output, Input, and Variables 35

in the order that they appear is called a sequence structure. In fact, all of the programs
that you will see in this chapter are sequence structures.

A structure, also called a control structure, is a logical design that controls the order
in which a set of statements execute. In the 1960s, a group of mathematicians proved
that only three program structures are needed to write any type of program. The sim-
plest of these structures is the sequence structure. Later in this book, you will learn
about the other two structures—decision structures and repetition structures.

Strings and String Literals
Programs almost always work with data of some type. For example, Program 2-1
uses the following three pieces of data:

"Kate Austen"
"1234 Walnut Street"
"Asheville, NC 28899"

These pieces of data are sequences of characters. In programming terms, a sequence of
characters that is used as data is called a string. When a string appears in the actual
code of a program (or in pseudocode, as it does in Program 2-1) it is called a string
literal. In program code, or pseudocode, a string literal is usually enclosed in quota-
tion marks. As mentioned earlier, the quotation marks simply mark where the string
begins and ends.

In this book, we will always enclose string literals in double quote marks ("). Most pro-
gramming languages use this same convention, but a few use single quote marks (').

Variables and Input
Quite often a program needs to store data in the computer’s memory so it can per-
form operations on that data. For example, consider the typical online shopping
experience: You browse a Web site and add the items that you want to purchase to
the shopping cart. As you add items to the shopping cart, data about those items is
stored in memory. Then, when you click the checkout button, a program running on
the Web site’s computer calculates the total of all the items you have in your shop-
ping cart, applicable sales taxes, shipping costs, and the total of all these charges.
When the program performs these calculations, it stores the results in the computer’s
memory.

Programs use variables to store data in memory. A variable is a storage location in
memory that is represented by a name. For example, a program that calculates the
sales tax on a purchase might use a variable named tax to hold that value in memory.
And a program that calculates the distance from Earth to a distant star might use
a variable named distance to hold that value in memory.

In this section, we will discuss a basic input operation: reading data that has been
typed on the keyboard. When a program reads data from the keyboard, usually it
stores that data in a variable so it can be used later by the program. In pseudocode
we will read data from the keyboard with the Input statement. As an example, look at
the following statement, which appeared earlier in the pay calculating program:

Input hours

Variables and Input

VideoNote

36 Chapter 2 Input, Processing, and Output

The word Input is an instruction to read a piece of data from the keyboard. The
word hours is the name of the variable in which that the data will be stored. When this
statement executes, two things happen:

● The program pauses and waits for the user to type something on the keyboard,
and then press the e key.

● When the e key is pressed, the data that was typed is stored in the hours
variable.

Program 2-2 is a simple pseudocode program that demonstrates the Input statement.
Before we examine the program, we should mention a couple of things. First, you will
notice that each line in the program is numbered. The line numbers are not part of
the pseudocode. We will refer to the line numbers later to point out specific parts of
the program. Second, the program’s output is shown immediately following the
pseudocode. From now on, all pseudocode programs will be shown this way.

Program 2-2

1 Display "What is your age?"
2 Input age
3 Display "Here is the value that you entered:"
4 Display age

Program Output (with Input Shown in Bold)

What is your age?
24 [Enter]
Here is the value that you entered:
24

The statement in line 1 displays the string "What is your age?" Then, the statement
in line 2 waits for the user to type a value on the keyboard and press e. The value
that is typed will be stored in the age variable. In the example execution of the pro-
gram, the user has entered 24. The statement in line 3 displays the string "Here is
the value that you entered:" and the statement in line 4 displays the value that
is stored in the age variable.

Notice that in line 4 there are no quotation marks around age. If quotation marks
were placed around age, it would have indicated that we want to display the word age
instead of the contents of the age variable. In other words, the following statement is
an instruction to display the contents of the age variable:

Display age

This statement, however, is an instruction to display the word age:

Display "age"

NOTE: In this section, we have mentioned the user. The user is simply any hypo-
thetical person that is using a program and providing input for it. The user is some-
times called the end user.

2.2 Output, Input, and Variables 37

Start

End

Display "What is your
age?"

Input age

Display "Here is the
value that you entered:"

Display age

Figure 2-7 Flowchart for Program 2-2

Figure 2-7 shows a flowchart for Program 2-2. Notice that the Input operation is also
represented by a parallelogram.

Variable Names
All high-level programming languages allow you to make up your own names for the
variables that you use in a program. You don’t have complete freedom in naming
variables, however. Every language has its own set of rules that you must abide by
when creating variable names.

Although the rules for naming variables differ slightly from one language to another,
there are some common restrictions:

● Variable names must be one word. They cannot contain spaces.
● In most languages, punctuation characters cannot be used in variable names. It is

usually a good idea to use only alphabetic letters and numbers in variable names.
● In most languages, the first character of a variable name cannot be a number.

In addition to following the programming language rules, you should always choose
names for your variables that give an indication of what they are used for. For example,
a variable that holds the temperature might be named temperature, and a variable that
holds a car’s speed might be named speed. You may be tempted to give variables names
like x and b2, but names like these give no clue as to what the variable’s purpose is.

38 Chapter 2 Input, Processing, and Output

Because a variable’s name should reflect the variable’s purpose, programmers often
find themselves creating names that are made of multiple words. For example, consider
the following variable names:

grosspay
payrate
hotdogssoldtoday

Unfortunately, these names are not easily read by the human eye because the words
aren’t separated. Because we can’t have spaces in variable names, we need to find
another way to separate the words in a multiword variable name, and make it more
readable to the human eye.

One way to do this is to use the underscore character to represent a space. For exam-
ple, the following variable names are easier to read than those previously shown:

gross_pay
pay_rate
hot_dogs_sold_today

Another way to address this problem is to use the camelCase naming convention.
camelCase names are written in the following manner:

• You begin writing the variable name with lowercase letters.
• The first character of the second and subsequent words is written in uppercase.

For example, the following variable names are written in camelCase:

grossPay
payRate
hotDogsSoldToday

Because the camelCase convention is very popular with programmers, we will use it
from this point forward. In fact, you have already seen several programs in this chap-
ter that use camelCase variable names. The pay calculating program shown at the
beginning of the chapter uses the variable name payRate. Later in this chapter, Program
2-9 uses the variable names originalPrice and salePrice, and Program 2-11 uses
the variable names futureValue and presentValue.

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name are sometimes reminiscent of a camel’s humps.

Displaying Multiple Items with
One Display Statement
If you refer to Program 2-2 you will see that we used the following two Display
statements in lines 3 and 4:

Display "Here is the value that you entered:"
Display age

We used two Display statements because we needed to display two pieces of data.
Line 3 displays the string literal "Here is the value that you entered:" and
line 4 displays the contents of the age variable.

2.2 Output, Input, and Variables 39

Most programming languages provide a way to display multiple pieces of data with one
statement. Because this is a common feature of programming languages, frequently we
will write Display statements in our pseudocode that display multiple items. We will
simply separate the items with a comma, as shown in line 3 of Program 2-3.

Program 2-3

1 Display "What is your age?"
2 Input age
3 Display "Here is the value that you entered: ", age

Program Output (with Input Shown in Bold)

What is your age?
24 [Enter]
Here is the value that you entered: 24

Take a closer look at line 3 of Program 2-3:

Notice that the string literal "Here is the value that you entered: " ends with
a space. That is because in the program output, we want a space to appear after the
colon, as shown here:

In most cases, when you are displaying multiple items on the screen, you want to sepa-
rate those items with spaces between them. Most programming languages do not auto-
matically print spaces between multiple items that are displayed on the screen. For
example, look at the following pseudocode statement:

Display "January", "February", "March"

In most programming languages, such as statement would produce the following output:

JanuaryFebruaryMarch

To separate the strings with spaces in the output, the Display statement should be
written as:

Display "January ", "February ", "March"

String Input
Programs 2-2 and 2-3 read numbers from the keyboard, which were stored in variables by
Input statements. Programs can also read string input. For example, the pseudocode in
Program 2-4 uses two Input statements: one to read a string and one to read a number.

Here is the value that you entered: 24

Notice the space.

Display "Here is the value that you entered: ", age

Notice the space.

40 Chapter 2 Input, Processing, and Output

Program 2-4

1 Display "Enter your name."
2 Input name
3 Display "Enter your age."
4 Input age
5 Display "Hello ", name
6 Display "You are ", age, " years old."

Program Output (with Input Shown in Bold)

Enter your name.
Andrea [Enter]
Enter your age.
24 [Enter]
Hello Andrea
You are 24 years old.

The Input statement in line 2 reads input from the keyboard and stores it in the name
variable. In the example execution of the program, the user entered Andrea. The
Input statement in line 4 reads input from the keyboard and stores it in the age vari-
able. In the example execution of the program, the user entered 24.

Prompting the User
Getting keyboard input from the user is normally a two-step process:

1. Display a prompt on the screen.
2. Read a value from the keyboard.

A prompt is a message that tells (or asks) the user to enter a specific value. For exam-
ple, the pseudocode in Program 2-3 gets the user to enter his or her age with the fol-
lowing statements:

Display "What is your age?"
Input age

In most programming languages, the statement that reads keyboard input does not
display instructions on the screen. It simply causes the program to pause and wait for
the user to type something on the keyboard. For this reason, whenever you write a
statement that reads keyboard input, you should also write a statement just before it
that tells the user what to enter. Otherwise, the user will not know what he or she is
expected to do. For example, suppose we remove line 1 from Program 2-3, as follows:

Input age
Display "Here is the value that you entered: ", age

If this were an actual program, can you see what would happen when it is executed?
The screen would appear blank because the Input statement would cause the pro-
gram to wait for something to be typed on the keyboard. The user would probably
think the computer was malfunctioning.

The term user-friendly is commonly used in the software business to describe programs
that are easy to use. Programs that do not display adequate or correct instructions are
frustrating to use, and are not considered user-friendly. One of the simplest things that
you can do to increase a program’s user-friendliness is to make sure that it displays clear,
understandable prompts prior to each statement that reads keyboard input.

2.3 Variable Assignment and Calculations 41

TIP: Sometimes we computer science instructors jokingly tell our students to write
programs as if “Uncle Joe” or “Aunt Sally” were the user. Of course, these are not
real people, but imaginary users who are prone to making mistakes if not told
exactly what to do. When you are designing a program, you should imagine that
someone who knows nothing about the program’s inner workings will be using it.

Checkpoint

2.7 What are the three operations that programs typically perform?

2.8 What is a sequence structure?

2.9 What is a string? What is a string literal?

2.10 A string literal is usually enclosed inside a set of what characters?

2.11 What is a variable?

2.12 Summarize three common rules for naming variables.

2.13 What variable naming convention do we follow in this book?

2.14 Look at the following pseudocode statement:

Input temperature

What happens when this statement executes?

2.15 Who is the user?

2.16 What is a prompt?

2.17 What two steps usually take place when a program prompts the user for input?

2.18 What does the term user-friendly mean?

2.3 Variable Assignment and Calculations

CONCEPT: You can store a value in a variable with an assignment statement. The
value can be the result of a calculation, which is created with math
operators.

Variable Assignment
In the previous section, you saw how the Input statement gets a value typed on the
keyboard and stores it in a variable. You can also write statements that store specific
values in variables. The following is an example, in pseudocode:

Set price = 20

This is called an assignment statement. An assignment statement sets a variable to a
specified value. In this case, the variable price is set to the value 20. When we write
an assignment statement in pseudocode, we will write the word Set, followed by the
name of the variable, followed by an equal sign (=), followed by the value we want
to store in the variable. The pseudocode in Program 2-5 shows another example.

42 Chapter 2 Input, Processing, and Output

Program 2-5

1 Set dollars = 2.75
2 Display "I have ", dollars, " in my account."

Program Output

I have 2.75 in my account.

In line 1, the value 2.75 is stored in the dollars variable. Line 2 displays the mes-
sage “I have 2.75 in my account.” Just to make sure you understand how the
Display statement in line 2 is working, let’s walk through it. The word Display is fol-
lowed by three pieces of data, so that means it will display three things. The first thing
it displays is the string literal "I have ". Next, it displays the contents of the dollars
variable, which is 2.75. Last, it displays the string literal " in my account."

Variables are called “variable” because they can hold different values while a pro-
gram is running. Once you set a variable to a value, that value will remain in the vari-
able until you store a different value in the variable. For example, look at the
pseudocode in Program 2-6.

Program 2-6

1 Set dollars = 2.75
2 Display "I have ", dollars, " in my account."
3 Set dollars = 99.95
4 Display "But now I have ", dollars, " in my account!"

Program Output

I have 2.75 in my account.
But now I have 99.95 in my account!

Line 1 sets the dollars variable to 2.75, so when the statement in line 2 executes, it
displays “I have 2.75 in my account.” Then, the statement in line 3 sets the dollars
variable to 99.95. As a result, the value 99.95 replaces the value 2.75 that was previ-
ously stored in the variable. When line 4 executes, it displays “But now I have 99.95 in
my account!” This program illustrates two important characteristics of variables:

• A variable holds only one value at a time.
• When you store a value in a variable, that value replaces the previous value that

was in the variable.

NOTE : When writing an assignment statement, all programming languages
require that you write the name of the variable that is receiving the value on the left
side of the = operator. For example, the following statement is incorrect:

Set 99.95 = dollars This is an error!

A statement such as this would be considered a syntax error.

2.3 Variable Assignment and Calculations 43

NOTE : In this book, we have chosen to start variable assignment statements
with the word Set because it makes it clear that we are setting a variable to a
value. In most programming languages, however, assignment statements do not
start with the word Set. In most languages, an assignment statement looks similar
to the following:

dollars = 99.95

If your instructor allows it, it is permissible to write assignment statements without
the word Set in your pseudocode. Just be sure to write the name of the variable
that is receiving the value on the left side of the equal sign.

End

Start

Display "I have ",
dollars, " in my

account."

Set dollars = 2.75

Display "But now I have ",
dollars, " in my account!"

Set dollars = 99.95

Figure 2-8 Flowchart for Program 2-6

In flowcharts, an assignment statement appears in a processing symbol, which is a
rectangle. Figure 2-8 shows a flowchart for Program 2-6.

44 Chapter 2 Input, Processing, and Output

Performing Calculations
Most real-world algorithms require calculations to be performed. A programmer’s
tools for performing calculations are math operators. Programming languages com-
monly provide the operators shown in Table 2-1.

Table 2-1 Common math operators

Symbol Operator Description

+ Addition Adds two numbers
- Subtraction Subtracts one number from another
* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the quotient
MOD Modulus Divides one number by another and gives the remainder

^ Exponent Raises a number to a power

Programmers use the operators shown in Table 2-1 to create math expressions. A
math expression performs a calculation and gives a value. The following is an exam-
ple of a simple math expression:

12 + 2

The values on the right and left of the + operator are called operands. These are values
that the + operator adds together. The value that is given by this expression is 14.

Variables may also be used in a math expression. For example, suppose we have two
variables named hours and payRate. The following math expression uses the * opera-
tor to multiply the value in the hours variable by the value in the payRate variable:

hours * payRate

When we use a math expression to calculate a value, normally we want to save that
value in memory so we can use it again in the program. We do this with an assignment
statement. Program 2-7 shows an example.

Program 2-7

1 Set price = 100
2 Set discount = 20
3 Set sale = price - discount
4 Display "The total cost is $", sale

Program Output

The total cost is $80

Line 1 sets the price variable to 100, and line 2 sets the discount variable to 20.
Line 3 sets the sale variable to the result of the expression price – discount. As
you can see from the program output, the sale variable holds the value 80.

Performing
Calculations

VideoNote

2.3 Variable Assignment and Calculations 45

In the Spotlight:
Calculating Cell Phone Overage Fees
Suppose your cell phone calling plan allows you to use 700 minutes per month. If you
use more than this limit in a month, you are charged an overage fee of 35 cents for each
excess minute. Your phone shows you the number of excess minutes that you have
used in the current month, but it does not show you how much your overage fee cur-
rently is. Until now, you’ve been doing the math the old-fashioned way (with pencil
and paper, or with a calculator), but you would like to design a program that will sim-
plify the task. You would like to be able to enter the number of excess minutes, and
have the program perform the calculation for you.

First, you want to make sure that you understand the steps that the program must per-
form. It will be helpful if you closely look at the way you’ve been solving this problem,
using only paper and pencil, or calculator:

Manual Algorithm (Using pencil and paper, or calculator)

1. You get the number of excess minutes that you have used.
2. You multiply the number of excess minutes by 0.35.
3. The result of the calculation is your current overage fee.

Ask yourself the following questions about this algorithm:

Question: What input do I need to perform this algorithm?
Answer: I need the number of excess minutes.

Question: What must I do with the input?
Answer: I must multiply the input (the number of excess minutes) by

0.35. The result of that calculation is the overage fee.

Question: What output must I produce?
Answer: The overage fee.

Now that you have identified the input, the process that must be performed, and the
output, you can write the general steps of the program’s algorithm:

Computer Algorithm

1. Get the number of excess minutes as input.
2. Calculate the overage fee by multiplying the number of excess minutes by 0.35.
3. Display the overage fee.

In Step 1 of the computer algorithm, the program gets the number of excess minutes
from the user. Any time a program needs the user to enter a piece of data, it does two
things: (1) it displays a message prompting the user for the piece of data, and (2) it
reads the data that the user enters on the keyboard, and stores that data in a variable.
In pseudocode, Step 1 of the algorithm will look like this:

Display "Enter the number of excess minutes."
Input excessMinutes

Notice that the Input statement stores the value entered by the user in a variable
named excessMinutes.

46 Chapter 2 Input, Processing, and Output

In Step 2 of the computer algorithm, the program calculates the overage fee by multi-
plying the number of excess minutes by 0.35. The following pseudocode statement per-
forms this calculation, and stores the result in a variable named overageFee:

Set overageFee = excessMinutes * 0.35

In Step 3 of the computer algorithm, the program displays the overage fee. Because the
overage fee is stored in the overageFee variable, the program will display a message
that shows the value of the overageFee variable. In pseudocode we will use the fol-
lowing statement:

Display "Your current overage fee is $", overageFee

Program 2-8 shows the entire pseudocode program, with example output. Figure 2-9
shows the flowchart for this program.

Program 2-8

1 Display "Enter the number of excess minutes."
2 Input excessMinutes
3 Set overageFee = excessMinutes * 0.35
4 Display "Your current overage fee is $", overageFee

Program Output (with Input Shown in Bold)

Enter the number of excess minutes.
100 [Enter]
Your current overage fee is $35

Start

Display "Enter the number
of excess minutes."

Input excessMinutes

Set overageFee =
excessMinutes * 0.35

Display "Your current
overage fee is $",

overageFee

End

Figure 2-9 Flowchart for Program 2-8

2.3 Variable Assignment and Calculations 47

In the Spotlight:
Calculating a Percentage
Determining percentages is a common calculation in computer programming. In
mathematics, the % symbol is used to indicate a percentage, but most programming
languages don’t use the % symbol for this purpose. In a program, you usually have to
convert a percentage to a decimal number. For example, 50 percent would be writ-
ten as 0.5 and 2 percent would be written as 0.02.

Let’s step through the process of writing a program that calculates a percentage. Sup-
pose a retail business is planning to have a storewide sale where the prices of all items
will be 20 percent off. We have been asked to write a program to calculate the sale
price of an item after the discount is subtracted. Here is the algorithm:

1. Get the original price of the item.
2. Calculate 20 percent of the original price. This is the amount of the discount.
3. Subtract the discount from the original price. This is the sale price.
4. Display the sale price.

In Step 1 we get the original price of the item. We will prompt the user to enter this
data on the keyboard. Recall from the previous section that prompting the user is a
two-step process: (1) display a message telling the user to enter the desired data, and
(2) reading that data from the keyboard. We will use the following pseudocode state-
ments to do this. Notice that the value entered by the user will be stored in a variable
named originalPrice.

Display "Enter the item's original price."
Input originalPrice

In Step 2, we calculate the amount of the discount. To do this we multiply the original
price by 20 percent. The following statement performs this calculation and stores the
result in the discount variable.

Set discount = originalPrice * 0.2

In Step 3, we subtract the discount from the original price. The following statement
does this calculation and stores the result in the salePrice variable.

Set salePrice = originalPrice – discount

Last, in Step 4, we will use the following statement to display the sale price:

Display "The sale price is $", salePrice

Program 2-9 shows the entire pseudocode program, with example output. Figure 2-10
shows the flowchart for this program.

Program 2-9

1 Display "Enter the item's original price."
2 Input originalPrice
3 Set discount = originalPrice * 0.2
4 Set salePrice = originalPrice – discount
5 Display "The sale price is $", salePrice

48 Chapter 2 Input, Processing, and Output

The Order of Operations
It is possible to build mathematical expressions with several operators. The follow-
ing statement assigns the sum of 17, the variable x, 21, and the variable y to the vari-
able answer.

Set answer = 17 + x + 21 + y

Some expressions are not that straightforward, however. Consider the following
statement:

Set outcome = 12 + 6 / 3

Program Output (with Input Shown in Bold)

Enter the item's original price.
100 [Enter]
The sale price is $80

End

Start

Display "Enter the
item's original price."

Set discount =
originalPrice * 0.2

Input originalPrice

Set salePrice =
originalPrice – discount

Display "The sale price
is $", salePrice

Figure 2-10 Flowchart for Program 2-9

2.3 Variable Assignment and Calculations 49

Table 2-2 Some expressions and their values

Expression Value

5 + 2 * 4 13

10 / 2 – 3 2

8 + 12 * 2 - 4 28

6 – 3 * 2 + 7 - 1 6

Figure 2-11 The order of operations at work

What value will be stored in outcome? The number 6 is used as an operand for both the
addition and division operators. The outcome variable could be assigned either 6 or 14,
depending on when the division takes place. The answer is 14 because the order of op-
erations dictates that the division operator works before the addition operator does.

In most programming languages, the order of operations can be summarized as follows:

1. Perform any operations that are enclosed in parentheses.
2. Perform any operations that use the exponent operator to raise a number to a

power.
3. Perform any multiplications, divisions, or modulus operations as they appear

from left to right.
4. Perform any additions or subtractions as they appear from left to right.

Mathematical expressions are evaluated from left to right. When two operators share
an operand, the order of operations determines which operator works first. Multipli-
cation and division are always performed before addition and subtraction, so the
statement

Set outcome = 12 + 6 / 3

works like this:

1. 6 is divided by 3, yielding a result of 2
2. 12 is added to 2, yielding a result of 14

It could be diagrammed as shown in Figure 2-11.

Set outcome = 12 + 6 / 3

Set outcome = 14

Set outcome = 12 + 2

Table 2-2 shows some other sample expressions with their values.

In the Spotlight:
Calculating an Average
Determining the average of a group of values is a simple calculation: You add all of the
values and then divide the sum by the number of values. Although this is a straightfor-
ward calculation, it is easy to make a mistake when writing a program that calculates an
average. For example, let’s assume that the variables a, b, and c each hold a value and
we want to calculate the average of those values. If we are careless, we might write a
statement such as the following to perform the calculation:

Set average = a + b + c / 3

Can you see the error in this statement? When it executes, the division will take place
first. The value in c will be divided by 3, and then the result will be added to a + b.
That is not the correct way to calculate an average. To correct this error we need to put
parentheses around a + b + c, as shown here:

Set average = (a + b + c) / 3

Let’s step through the process of writing a program that calculates an average. Suppose
you have taken three tests in your computer science class, and you want to write a pro-
gram that will display the average of the test scores. Here is the algorithm:

1. Get the first test score.
2. Get the second test score.
3. Get the third test score.
4. Calculate the average by adding the three test scores and dividing the sum by 3.
5. Display the average.

In Steps 1, 2, and 3 we will prompt the user to enter the three test scores. We will store
those test scores in the variables test1, test2, and test3. In Step 4 we will calculate
the average of the three test scores. We will use the following statement to perform the
calculation and store the result in the average variable:

Set average = (test1 + test2 + test3) / 3

50 Chapter 2 Input, Processing, and Output

Grouping with Parentheses
Parts of a mathematical expression may be grouped with parentheses to force some op-
erations to be performed before others. In the following statement, the variables a and
b are added together, and their sum is divided by 4:

Set result = (a + b) / 4

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 2-3 shows more expressions and their values.

Table 2-3 More expressions and their values

Expression Value

(5 + 2) * 4 28

10 / (5 - 3) 5

8 + 12 * (6 - 2) 56

(6 - 3) * (2 + 7) / 3 9

2.3 Variable Assignment and Calculations 51

Last, in Step 5, we display the average. Program 2-10 shows the pseudocode for this
program, and Figure 2-12 shows the flowchart.

Program 2-10

1 Display "Enter the first test score."
2 Input test1
3 Display "Enter the second test score."
4 Input test2
5 Display "Enter the third test score."
6 Input test3
7 Set average = (test1 + test2 + test3) / 3
8 Display "The average score is ", average

Program Output (with Input Shown in Bold)

Enter the first test score.
90 [Enter]
Enter the second test score.
80 [Enter]
Enter the third test score.
100 [Enter]
The average score is 90

End

Display "The average
score is ", average

Display "Enter the
third test score."

Input test3

Set average =
(test1 + test2 + test3) / 3

AStart

Display "Enter the
first test score."

Input test1

Display "Enter the
second test score."

Input test2

A

Figure 2-12 Flowchart for Program 2-10

Notice that the flowchart uses a new symbol:

A

52 Chapter 2 Input, Processing, and Output

This is called a connector symbol and is used when a flowchart is broken into two or
more smaller flowcharts. This is necessary when a flowchart does not fit on a single
page, or must be divided into sections. A connector symbol, which is a small circle with
a letter or number inside it, allows you to connect two flowcharts. In Figure 2-12 the A
connector indicates that the second flowchart segment begins where the first flowchart
segment ends.

Advanced Arithmetic Operators:
Exponent and Modulus
In addition to the basic math operators for addition, subtraction, multiplication, and
division, many languages provide an exponent operator and a modulus operator. The
^ symbol is commonly used as the exponent operator, and its purpose it to raise a
number to a power. For example, the following pseudocode statement raises the
length variable to the power of 2 and stores the result in the area variable:

Set area = length^2

The word MOD is used in many languages as the modulus operator. (Some languages use
the % symbol for the same purpose.) The modulus operator performs division, but in-
stead of returning the quotient, it returns the remainder. The following statement as-
signs 2 to leftover:

Set leftover = 17 MOD 3

This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of
2. You will not use the modulus operator frequently, but it is useful in some situations.
It is commonly used in calculations that detect odd or even numbers, determine the day
of the week, measure the passage of time, and other specialized operations.

Converting Math Formulas to
Programming Statements
You probably remember from algebra class that the expression 2xy is understood to
mean 2 times x times y. In math, you do not always use an operator for multiplication.
Programming languages, however, require an operator for any mathematical opera-
tion. Table 2-4 shows some algebraic expressions that perform multiplication and the
equivalent programming expressions.

Table 2-4 Algebraic expressions

Algebraic Expression Operation Being Performed Programming Expression

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

2.3 Variable Assignment and Calculations 53

When converting some algebraic expressions to programming expressions, you may
have to insert parentheses that do not appear in the algebraic expression. For example,
look at the following formula:

To convert this to a programming statement, a + b will have to be enclosed in
parentheses:

Set x = (a + b) / c

Table 2-5 shows additional algebraic expressions and their pseudocode equivalents.

x
a b

c
= +

Table 2-5 Algebraic expressions and pseudocode statements

Algebraic Expression Pseudocode Statement

Set y = x / 2 * 3

z = 3bc + 4 Set z = 3 * b * c + 4

Set a = (x + 2) / (a - 1)

In the Spotlight:
Converting a Math Formula
to a Programming Statement
Suppose you want to deposit a certain amount of money into a savings account, and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today to
make that happen? You can use the following formula to find out:

The terms in the formula are as follows:

● P is the present value, or the amount that you need to deposit today.
● F is the future value that you want in the account. (In this case, F is $10,000.)
● r is the annual interest rate.
● n is the number of years that you plan to let the money sit in the account.

It would be nice to write a computer program to perform the calculation, because
then we can experiment with different values for the terms. Here is an algorithm that
we can use:

P
F

r n
=

+()1

y
x= 3
2

a
x
a

= +
−

2
1

54 Chapter 2 Input, Processing, and Output

1. Get the desired future value.
2. Get the annual interest rate.
3. Get the number of years that the money will sit in the account.
4. Calculate the amount that will have to be deposited.
5. Display the result of the calculation in Step 4.

In Steps 1 through 3, we will prompt the user to enter the specified values. We will
store the desired future value in a variable named futureValue, the annual interest
rate in a variable named rate, and the number of years in a variable named years.

In Step 4, we calculate the present value, which is the amount of money that we will
have to deposit. We will convert the formula previously shown to the following
pseudocode statement. The statement stores the result of the calculation in the pre-
sentValue variable.

Set presentValue = futureValue / (1 + rate)^years

In Step 5, we display the value in the presentValue variable. Program 2-11 shows the
pseudocode for this program, and Figure 2-13 shows the flowchart.

Program 2-11

1 Display "Enter the desired future value."
2 Input futureValue
3 Display "Enter the annual interest rate."
4 Input rate
5 Display "How many years will you let the money grow?"
6 Input years
7 Set presentValue = futureValue / (1 + rate)^years
8 Display "You will need to deposit $", presentValue

Program Output (with Input Shown in Bold)

Enter the desired future value.
10000 [Enter]
Enter the annual interest rate.
0.05 [Enter]
How many years will you let the money grow?
10 [Enter]
You need to deposit $6139

2.3 Variable Assignment and Calculations 55

Checkpoint

2.19 What is an assignment statement?

2.20 When you assign a value to a variable, what happens to any value that is
already stored in the variable?

2.21 Summarize the mathematical order of operations, as it works in most
programming languages.

2.22 What is the purpose of the exponent operator?

2.23 What is the purpose of the modulus operator?

Figure 2-13 Flowchart for Program 2-11

End

Display "You will need to
deposit $", presentValue

Display "How many years
will you let the money

grow?"

Input years

Set presentValue =
futureValue /

(1 + rate)^years

AStart

Display "Enter the
desired future value."

Input futureValue

Display "Enter the
annual interest rate."

Input rate

A

56 Chapter 2 Input, Processing, and Output

2.4 Variable Declarations and Data Types

CONCEPT: Most languages require that variables be declared before they are used
in a program. When a variable is declared, it can optionally be initial-
ized with a value. Using an uninitialized variable is the source of many
errors in programming.

Most programming languages require that you declare all of the variables that you in-
tend to use in a program. A variable declaration is a statement that typically specifies
two things about a variable:

● The variable’s name
● The variable’s data type

A variable’s data type is simply the type of data that the variable will hold. Once you
declare a variable, it can be used to store values of only the specified data type. In most
languages, an error occurs if you try to store values of other types in the variable.

The data types that you are allowed to use depend on the programming language. For
example, the Java language provides four data types for integer numbers, two data
types for real numbers, one data type for strings, and others.

So far, we haven’t declared any of the variables that we have used in our example
pseudocode programs. We have simply used the variables without first declaring them.
This is permissible with short pseudocode programs, but as programs grow in length
and complexity, it makes sense to declare them. When you declare variables in a
pseudocode program, it will make the job of translating the pseudocode to actual code
easier.

In most of the programs in this book, we will use only three data types when we de-
clare variables: Integer, Real, and String. Here is a summary of each:

● A variable of the Integer data type can hold whole numbers. For example, an
Integer variable can hold values such as 42, 0, and –99. An Integer variable
cannot hold numbers with a fractional part, such as 22.1 or –4.9.

● A variable of the Real data type can hold either whole numbers or numbers with
a fractional part. For example, a Real variable can hold values such as 3.5,
–87.95, and 3.0.

● A variable of the String data type can hold any string of characters, such as
someone’s name, address, password, and so on.

In this book, we will begin variable declarations with the word Declare, followed by
a data type, followed by the variable’s name. Here is an example:

Declare Integer length

This statement declares a variable named length, of the Integer data type. Here is
another example:

Declare Real grossPay

Variable
Declarations

VideoNote

2.4 Variable Declarations and Data Types 57

This statement declares a variable named grossPay, of the Real data type. Here is one
more example:

Declare String name

This statement declares a variable named name, of the String data type.

If we need to declare more than one variable of the same data type, we can use one dec-
laration statement. For example, suppose we want to declare three variables, length,
width, and height, all of the Integer data type. We can declare all three with one
statement, as shown here:

Declare Integer length, width, height

Declaring Variables Before Using Them
The purpose of a variable declaration statement is to tell the compiler or interpreter
that you plan to use a particular variable in the program. A variable declaration state-
ment typically causes the variable to be created in memory. For this reason, you have to
write a variable’s declaration statement before any other statements in the program
that use the variable. This makes perfect sense because you cannot store a value in a
variable if the variable has not been created in memory.

For example, look at the following pseudocode. If this code were converted to actual
code in a language like Java or C++, it would cause an error because the Input state-
ment uses the age variable before the variable has been declared.

Display "What is your age?"
Input age This pseudocode has an error!
Declare Integer age

Program 2-12 shows the correct way to declare a variable. Notice that the declara-
tion statement for the age variable appears before any other statements that use the
variable.

Program 2-12

1 Declare Integer age
2 Display "What is your age?"
3 Input age
4 Display "Here is the value that you entered:"
5 Display age

NOTE: In addition to a String data type, many programming languages also pro-
vide a Character data type. The difference between a String variable and a Char-
acter variable is that a String variable can hold a sequence of characters of virtually
any length, and a Character variable can hold only one character. In this book, we
will keep things simple. We will use String variables to hold all character data.

⎫
⎬
⎭

58 Chapter 2 Input, Processing, and Output

Program Output (with Input Shown in Bold)

What is your age?
24 [Enter]
Here is the value that you entered:
24

Program 2-13 shows another example. This program declares a total of four variables:
three to hold test scores and another to hold the average of those test scores.

Program 2-13

1 Declare Real test1
2 Declare Real test2
3 Declare Real test3
4 Declare Real average
5
6 Set test1 = 88.0
7 Set test2 = 92.5
8 Set test3 = 97.0
9 Set average = (test1 + test2 + test3) / 3
10 Display "Your average test score is ", average

Program Output

Your average test score is 92.5

This program shows a common technique for declaring variables: they are all declared
at the beginning of the program, before any other statements. This is one way of mak-
ing sure that all variables are declared before they are used.

Notice that line 5 in this program is blank. This blank line does not affect the way the
program works because most compilers and interpreters ignore blank lines. For the hu-
man reader, however, this blank line visually separates the variable declarations from
the other statements. This makes the program appear more organized and easier for
people to read.

Programmers commonly use blank lines and indentations in their code to create a sense
of organization visually. This is similar to the way that authors visually arrange the text
on the pages of a book. Instead of writing each chapter as one long series of sentences,
they break it into paragraphs. This does not change the information in the book; it
only makes it easier to read.

Although you are generally free to place blank lines and indentations anywhere in your
code, you should not do this haphazardly. Programmers follow certain conventions
when it comes to this. For example, you have just learned that one convention is to use
a blank line to separate a group of variable declaration statements from the rest of the
statements in a program. These conventions are known as programming style. As you
progress through this book you will see many other programming style conventions.

2.4 Variable Declarations and Data Types 59

Variable Initialization
When you declare a variable, you can optionally assign a value to it in the declaration
statement. This is known as initialization. For example, the following statement de-
clares a variable named price and assigns the value 49.95 to it:

Declare Real price = 49.95

We would say that this statement initializes the price variable with the value 49.95.
The following statement shows another example:

Declare Integer length = 2, width = 4, height = 8

This statement declares and initializes three variables. The length variable is initialized with
the value 2, width is initialized with the value 4, and height is initialized with the value 8.

Uninitialized Variables
An uninitialized variable is a variable that has been declared, but has not been initial-
ized or assigned a value. Uninitialized variables are a common cause of logic errors in
programs. For example, look at the following pseudocode:

Declare Real dollars
Display "I have ", dollars, " in my account."

In this pseudocode, we have declared the dollars variable, but we have not initialized
it or assigned a value to it. Therefore, we do not know what value the variable holds.
Nevertheless, we have used the variable in a Display statement.

You’re probably wondering what a program like this would display. An honest answer
would be “I don’t know.” This is because each language has its own way of handling
uninitialized variables. Some languages assign a default value such as 0 to uninitialized
variables. In many languages, however, uninitialized variables hold unpredictable val-
ues. This is because those languages set aside a place in memory for the variable, but do
not alter the contents of that place in memory. As a result, an uninitialized variable
holds the value that happens to be stored in its memory location. Programmers typi-
cally refer to unpredictable values such as this as “garbage.”

Uninitialized variables can cause logic errors that are hard to find in a program. This is
especially true when an uninitialized variable is used in a calculation. For example,
look at the following pseudocode, which is a modified version of Program 2-13. Can
you spot the error?

1 Declare Real test1
2 Declare Real test2
3 Declare Real test3
4 Declare Real average
5 This pseudocode
6 Set test1 = 88.0 contains an error!
7 Set test2 = 92.5
8 Set average = (test1 + test2 + test3) / 3
9 Display "Your average test score is ", average

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

60 Chapter 2 Input, Processing, and Output

This program will not work properly because the test3 variable is never assigned a
value. The test3 variable will contain garbage when it is used in the calculation in line
8. This means that the calculation will result in an unpredictable value, which will be
assigned to the average variable. A beginning programmer might have trouble finding
this error because he or she would initially assume that something is wrong with the
math in line 8.

In the next section, we will discuss a debugging technique that will help uncover errors
such as the one in Program 2-13. However, as a rule you should always make sure that
your variables either (1) are initialized with the correct value when you declare them,
or (2) receive the correct value from an assignment statement or an Input statement
before they are used for any other purpose.

Numeric Literals and Data Type Compatibility
Many of the programs that you have seen so far have numbers written into their
pseudocode. For example, the following statement, which appears in Program 2-6, has
the number 2.75 written into it.

Set dollars = 2.75

And, the following statement, which appears in Program 2-7, has the number 100
written into it.

Set price = 100

A number that is written into a program’s code is called a numeric literal. In most pro-
gramming languages, if a numeric literal is written with a decimal point, such as 2.75,
that numeric literal will be stored in the computer’s memory as a Real and it will be
treated as a Real when the program runs. If a numeric literal does not have a decimal
point, such as 100, that numeric literal will be stored in the computer’s memory as an
Integer and it will be treated as an Integer when the program runs.

This is important to know when you are writing assignment statements or initializing
variables. In many languages, an error will occur if you try to store a value of one data
type in a variable of another data type. For example, look at the following pseudocode:

Declare Integer i
Set i = 3.7 This is an error!

The assignment statement will cause an error because it attempts to assign a real num-
ber, 3.7, in an Integer variable. The following pseudocode will also cause an error.

Declare Integer i
Set i = 3.0 This is an error!

Even though the numeric literal 3.0 does not have a fractional value (it is mathe-
matically the same as the integer 3), it is still treated as a real number by the computer
because it is written with a decimal point.

2.4 Variable Declarations and Data Types 61

Integer Division
Be careful when dividing an integer by another integer. In many programming lan-
guages, when an integer is divided by an integer the result will also be an integer. This
behavior is known as integer division. For example, look at the following pseudocode:

Set number = 3 / 2

This statement divides 3 by 2 and stores the result in the number variable. What will
be stored in number? You would probably assume that 1.5 would be stored in number
because that’s the result your calculator shows when you divide 3 by 2. However,
that’s not what will happen in many programming languages. Because the numbers
3 and 2 are both treated as integers, the programming language that you are using
might throw away the fractional part of the answer. (Throwing away the fractional
part of a number is called truncation.) As a result, the statement will store 1 in the
number variable, not 1.5.

If you are using a language that behaves this way and you want to make sure that a
division operation yields a real number, at least one of the operands must be a real
number or a Real variable.

NOTE: Most languages do not allow you to assign real numbers to Integer vari-
ables because Integer variables cannot hold fractional amounts. In many languages,
however, you are allowed to assign an integer value to a Real variable without caus-
ing an error. Here is an example:

Declare Real r
Set r = 77

Even though the numeric literal 77 is treated as an Integer, it can be assigned to a
Real variable without the loss of data.

NOTE: In Java, C++, C, and Python, the / operator throws away the fractional
part of the result when both operands are integers. In these languages the result of
the expression 3/2 would be 1. In Visual Basic, the / operator does not throw
away the fractional part of the answer. In Visual Basic, the result of the expression
3/2 would be 1.5.

Checkpoint

2.24 What two items do you usually specify with a variable declaration?

2.25 Does it matter where you write the variable declarations in a program?

2.26 What is variable initialization?

2.27 Do uninitialized variables pose any danger in a program?

2.28 What is an uninitialized variable?

62 Chapter 2 Input, Processing, and Output

2.5 Named Constants

CONCEPT: A named constant is a name that represents a value that cannot be
changed during the program’s execution.

Assume that the following statement appears in a banking program that calculates data
pertaining to loans:

Set amount = balance * 0.069

In such a program, two potential problems arise. First, it is not clear to anyone other
than the original programmer what 0.069 is. It appears to be an interest rate, but in
some situations there are fees associated with loan payments. How can the purpose of
this statement be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate,
what if the rate changes from 6.9 percent to 7.2 percent? The programmer would have
to search through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant
is a name that represents a value that cannot be changed during the program’s execu-
tion. The following is an example of how we will declare named constants in our
pseudocode:

Constant Real INTEREST_RATE = 0.069

This creates a constant named INTEREST_RATE. The constant’s value is the Real num-
ber 0.069. Notice that the declaration looks a lot like a variable declaration, except
that we use the word Constant instead of Declare. Also, notice that the name of the
constant is written in all uppercase letters. This is a standard practice in most pro-
gramming languages because it makes named constants easily distinguishable from
regular variable names. An initialization value must be given when declaring a named
constant.

An advantage of using named constants is that they make programs more self-
explanatory. The following statement:

Set amount = balance * 0.069

can be changed to read

Set amount = balance * INTEREST_RATE

A new programmer can read the second statement and know what is happening. It is
evident that balance is being multiplied by the interest rate. Another advantage to
this approach is that widespread changes can easily be made to the program. Let’s
say the interest rate appears in a dozen different statements throughout the program.
When the rate changes, the initialization value in the declaration of the named constant

2.6 Hand Tracing a Program 63

is the only value that needs to be modified. If the rate increases to 7.2 percent, the
declaration can be changed to the following:

Constant Real INTEREST_RATE = 0.072

The new value of 0.072 will then be used in each statement that uses the
INTEREST_RATE constant.

2.6 Hand Tracing a Program

CONCEPT: Hand tracing is a simple debugging process for locating hard-to-find
errors in a program.

Hand tracing is a debugging process where you imagine that you are the computer ex-
ecuting a program. (This process is also known as desk checking.) You step through
each of the program’s statements one by one. As you carefully look at a statement, you
record the contents that each variable will have after the statement executes. This
process is often helpful in finding mathematical mistakes and other logic errors.

To hand trace a program, you construct a chart that has a column for each variable,
and a row for each line in the program. For example, Figure 2-14 shows how we would
construct a hand trace chart for the program that you saw in the previous section. The
chart has a column for each of the four variables: test1, test2, test3, and average.
The chart also has nine rows, one for each line in the program.

NOTE: A named constant cannot be assigned a value with a Set statement. If a
statement in a program attempts to change the value of a named constant, an error
will occur.

Figure 2-14 A program with a hand trace chart

To hand trace this program, you step through each statement, observing the opera-
tion that is taking place, and then record the value that each variable will hold after
the statement executes. When the process is complete, the chart will appear as shown

1 Declare Real test1
2 Declare Real test2
3 Declare Real test3
4 Declare Real average
5
6 Set test1 = 88.0
7 Set test2 = 92.5
8 Set average = (test1 + test2 + test3) / 3
9 Display "Your average test score is ", average

test1 test2 test3 average
1

2

3
4

5
6

7

8
9

64 Chapter 2 Input, Processing, and Output

in Figure 2-15. We have written question marks in the chart to indicate that a vari-
able is uninitialized.

Figure 2-15 Program with the hand trace chart completed

1 Declare Real test1
2 Declare Real test2
3 Declare Real test3
4 Declare Real average
5
6 Set test1 = 88.0
7 Set test2 = 92.5
8 Set average = (test1 + test2 + test3) / 3
9 Display "Your average test score is ", average

?? ??

?? ??

?? ??
?? ??

?? ??
?? ?88

?92.5 ?88

undefined92.5 ?88

92.5 ?88 undefined

test1 test2 test3 average
1

2

3
4

5

6

7

8
9

When we get to line 8 we will carefully do the math. This means we look at the values
of each variable in the expression. At that point we discover that one of the variables,
test3, is uninitialized. Because it is uninitialized, we have no way of knowing the
value that it contains. Consequently, the result of the calculation will be undefined. Af-
ter making this discovery, we can correct the problem by adding a line that assigns a
value to test3.

Hand tracing is a simple process that focuses your attention on each statement in a
program. Often this helps you locate errors that are not obvious.

2.7 Documenting a Program

CONCEPT: A program’s external documentation describes aspects of the program
for the user. The internal documentation is for the programmer, and ex-
plains how parts of the program work.

A program’s documentation explains various things about the program. There are usu-
ally two types of program documentation: external and internal. External documenta-
tion is typically designed for the user. It consists of documents such as a reference guide
that describes the program’s features, and tutorials that teach the user how to operate
the program.

Sometimes the programmer is responsible for writing all or part of a program’s exter-
nal documentation. This might be the case in a small organization, or in a company
that has a relatively small programming staff. Some organizations, particularly large
companies, will employ a staff of technical writers whose job is to produce external
documentation. These documents might be in printed manuals, or in files that can be
viewed on the computer. In recent years it has become common for software compa-
nies to provide all of a program’s external documentation in PDF (Portable Document
Format) files.

Internal documentation appears as comments in a program’s code. Comments are
short notes placed in different parts of a program, explaining how those parts of the

2.7 Documenting a Program 65

program work. Although comments are a critical part of a program, they are ignored
by the compiler or interpreter. Comments are intended for human readers of a pro-
gram’s code, not the computer.

Programming languages provide special symbols or words for writing comments. In
several languages, including Java, C, and C++, you begin a comment with two forward
slashes (//). Everything that you write on the same line, after the slashes, is ignored by
the compiler. Here is an example of a comment in any of those languages:

// Get the number of hours worked.

Some languages use symbols other than the two forward slashes to indicate the begin-
ning of a comment. For example, Visual Basic uses an apostrophe ('), and Python uses
the # symbol. In this book, we will use two forward slashes (//) in pseudocode.

Block Comments and Line Comments
Programmers generally write two types of comments in a program: block comments
and line comments. Block comments take up several lines and are used when lengthy
explanations are required. For example, a block comment often appears at the begin-
ning of a program, explaining what the program does, listing the name of the author,
giving the date that the program was last modified, and any other necessary informa-
tion. The following is an example of a block comment:

// This program calculates an employee's gross pay.
// Written by Matt Hoyle.
// Last modified on 12/14/2010

NOTE: Some programming languages provide special symbols to mark the begin-
ning and ending of a block comment.

Line comments are comments that occupy a single line, and explain a short section of
the program. The following statements show an example:

// Calculate the interest.
Set interest = balance * INTEREST_RATE
// Add the interest to the balance.
Set balance = balance + interest

A line comment does not have to occupy an entire line. Anything appearing after the //
symbol, to the end of the line, is ignored, so a comment can appear after an executable
statement. Here is an example:

Input age // Get the user's age.

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it’s a lot more fun to write code that actually does
something! It is crucial that you take the extra time to write comments, however. They
will almost certainly save you time in the future when you have to modify or debug the
program. Even large and complex programs can be made easy to read and understand
if they are properly commented.

66 Chapter 2 Input, Processing, and Output

In the Spotlight:
Using Named Constants,
Style Conventions, and Comments
Suppose we have been given the following programming problem: Scientists have de-
termined that the world’s ocean levels are currently rising at about 1.5 millimeters per
year. Write a program to display the following:

● The number of millimeters that the oceans will rise in five years
● The number of millimeters that the oceans will rise in seven years
● The number of millimeters that the oceans will rise in ten years

Here is the algorithm:

1. Calculate the amount that the oceans will rise in five years.
2. Display the result of the calculation in Step 1.
3. Calculate the amount that the oceans will rise in seven years.
4. Display the result of the calculation in Step 3.
5. Calculate the amount that the oceans will rise in ten years.
6. Display the result of the calculation in Step 5.

This program is straightforward. It performs three calculations and displays the results
of each. The calculations should give the amount the oceans will rise in five, seven, and
ten years. Each of these values can be calculated with the following formula:

Amount of yearly rise × Number of years

The amount of yearly rise is the same for each calculation, so we will create a constant
to represent that value. Program 2-14 shows the pseudocode for the program.

Program 2-14

1 // Declare the variables
2 Declare Real fiveYears
3 Declare Real sevenYears
4 Declare Real tenYears
5
6 // Create a constant for the yearly rise
7 Constant Real YEARLY_RISE = 1.5
8
9 // Display the amount of rise in five years
10 Set fiveYears = YEARLY_RISE * 5
11 Display "The ocean levels will rise ", fiveYears,
12 " millimeters in five years."
13
14 // Display the amount of rise in seven years
15 Set sevenYears = YEARLY_RISE * 7
16 Display "The ocean levels will rise ", sevenYears,
17 " millimeters in seven years."
18
19 // Display the amount of rise in ten years
20 Set tenYears = YEARLY_RISE * 10
21 Display "The ocean levels will rise ", tenYears,
22 " millimeters in ten years."

2.7 Documenting a Program 67

Program Output

The ocean levels will rise 7.5 millimeters in five years.
The ocean levels will rise 10.5 millimeters in seven years.
The ocean levels will rise 15 millimeters in ten years.

Three variables, fiveYears, sevenYears, and tenYears, are declared in lines 2
through 4. These variables will hold the amount that the ocean levels will rise in five,
seven, and ten years.

Line 7 creates a constant, YEARLY_RISE, which is set to the value 1.5. This is the
amount that the oceans rise per year. This constant will be used in each of the pro-
gram’s calculations.

Lines 10 through 12 calculate and display the amount that the oceans will rise in five
years. The same values for seven years and ten years are calculated and displayed in
lines 15 through 17 and 20 through 22.

This program illustrates the following programming style conventions:

● Several blank lines appear throughout the program (see lines 5, 8, 13, and 18).
These blank lines do not affect the way the program works, but make the
pseudocode easier to read.

● Line comments are used in various places to explain what the program is doing.
● Notice that each of the Display statements is too long to fit on one line. (See

lines 11 and 12, 16 and 17, 21 and 22.) Most programming languages allow you
to write long statements across several lines. When we do this in pseudocode, we
will indent the second and subsequent lines. This will give a visual indication that
the statement spans more than one line.

Figure 2-16 shows a flowchart for the program.

Display "The ocean levels
will rise ", fiveYears, "

millimeters in five years."

Declare Real fiveYears
Declare Real sevenYears

Declare Real tenYears

Constant Real
YEARLY_RISE = 1.5

Start

A

Set fiveYears =
YEARLY_RISE * 5

End

A

Set sevenYears =
YEARLY_RISE * 7

Set tenYears =
YEARLY_RISE * 10

Display "The ocean levels
will rise ", sevenYears, "

millimeters in seven years."

Display "The ocean levels
will rise ", tenYears, "

millimeters in ten years."

Figure 2-16 Flowchart for Program 2-14

68 Chapter 2 Input, Processing, and Output

Checkpoint

2.29 What is external documentation?

2.30 What is internal documentation?

2.31 What are the two general types of comments that programmers write in a
program’s code? Describe each.

2.8 Designing Your First Program
Sometimes, as a beginning student, you might have trouble getting started with a pro-
gramming problem. In this section we will present a simple problem, go through the
process of analyzing the program’s requirements, and design the algorithm in
pseudocode and a flowchart. Here is the programming problem:

Batting Average
In baseball, batting average is commonly used to measure a player’s batting ability. You
use the following formula to calculate a player’s batting average:

Batting Average = Hits ÷ Times at Bat

In the formula, Hits is the number of successful hits made by the player, and Times at
Bat is the number of times the player was at bat. For example, if a player is at bat 500
times during a season, and gets 150 hits, that player’s batting average is .300. Design a
program to calculate any player’s batting average.

Recall from Section 2.2 that a program’s actions can typically be divided into the fol-
lowing three phases:

1. Input is received.
2. Some process (such as a calculation) is performed on the input.
3. Output is produced.

Your first step is to determine what is required in each phase. Usually these require-
ments are not stated directly in the problem description. For example, the previously
shown batting average problem explains what a batting average is, and merely in-
structs you to design a program to calculate any player’s batting average. It is up to you
to brainstorm the problem and determine the requirements of each phase. Let’s take a
closer look at each phase of the batting average problem.

1. Input is received.

To determine a program’s input requirements, you must determine the pieces of data
that are required for the program to complete its task. If we look at the batting aver-
age formula, we see that two values are needed to perform the calculation:
• The number of hits
• The number of times at bat

Because these values are unknown, the program will have to prompt the user to
enter them.

Each piece of input will be stored in a variable. You will have to declare those
variables when you design the program, so it is helpful in this phase to think
about each variable’s name and data type. In the batting average program we will
use the name hits for the variable that stores the number of hits, and the name
atBat for the variable that holds the number of times at bat. Both of these values
will be whole numbers, so these variables will be declared as Integers.

2. Some process (such as a calculation) is performed on the input.

Once the program has gathered the required input, it can proceed to use that
input in any necessary calculations, or other operations. The batting average
program will divide the number of hits by the number of times at bat. The result
of the calculation is the player’s batting average.

Keep in mind that when a mathematical calculation is performed, you typically
want to store the result of that calculation in a variable. So, you should think
about the names and data types of any variables that are needed in this phase. In
this example, we will use the name battingAverage for the variable that stores
the player’s batting average. Because this variable will store the result of a divi-
sion, we will declare it as a Real.

3. Output is produced.

A program’s output will typically be the result of the process or processes that it
has performed. The output of the batting average program will be the result of
the calculation, which is stored in a variable named battingAverage. The pro-
gram will display this number in a message that explains what it is.

Now that we have identified the input, processing, and output requirements, we can create
the pseudocode and/or flowcharts. First, we will write the pseudocode variable declarations:

Declare Integer hits

Declare Integer atBat

Declare Real battingAverage

Next we will write the pseudocode for gathering input. Recall that a program typically
does two things when it needs the user to enter a piece of input on the keyboard: (1) it
displays a message prompting the user for the piece of data, and (2) it reads the user’s
input and stores that data in a variable. Here is the pseudocode for reading the two
pieces of input required by the batting average program:

Display "Enter the player's number of hits."

Input hits

Display "Enter the player's number of times at bat."

Input atBat

Next we will write the pseudocode for calculating the batting average:

Set battingAverage = hits / atBat

And finally, we write the pseudocode for displaying the output:

Display "The player's batting average is ", battingAverage

Now we can put all of these pieces together to form a complete program. Program 2-15
shows the pseudocode program with comments, and Figure 2-17 shows the flowchart.

2.8 Designing Your First Program 69

70 Chapter 2 Input, Processing, and Output

Program 2-15

1 // Declare the necessary variables.
2 Declare Integer hits
3 Declare Integer atBat
4 Declare Real battingAverage
5
6 // Get the number of hits.
7 Display "Enter the player's number of hits."
8 Input hits
9
10 // Get the number of times at bat.
11 Display "Enter the player's number of times at bat."
12 Input atBat
13
14 // Calculate the batting average.
15 Set battingAverage = hits / atBat
16
17 // Display the batting average.
18 Display "The player's batting average is ", battingAverage

Program Output (with Input Shown in Bold)

Enter the player's number of hits.
150 [Enter]
Enter the player's number of times at bat.
500 [Enter]
The player's batting average is 0.3

Start

Display "Enter the player’s
number of hits: "

Input hits

Declare Integer hits
Declare Integer atBat

Declare Real
battingAverage

A

End

Display "The player’s
batting average is ",

battingAverage

Set battingAverage = hits /
atBat

Display "Enter the player’s
number of times at bat: "

Input atBat

A

Figure 2-17 Flowchart for Program 2-15

Review Questions 71

Summary
As a beginning student, whenever you have trouble getting started with a program
design, determine the program’s requirements as follows:

1. Input: Carefully study the problem and identify the pieces of data that the pro-
gram needs to read as input. Once you know what data is needed as input, decide
the names of the variables for those pieces of data, and their data types.

2. Process: What must the program do with the input that it will read? Determine
the calculations and/or other processes that must be performed. At this time,
decide the names and data types of any variables needed to hold the results of
calculations.

3. Output: What output must the program produce? In most cases, it will be the
results of the program’s calculations and/or other processes.

Once you have determined these requirements, you will have an understanding of what
the program must do. You will also have a list of variables and their data types. The
next step is writing the algorithm in pseudocode, or drawing it as a flowchart.

Review Questions

Multiple Choice

1. A __________ error does not prevent the program from running, but causes it to
produce incorrect results.

a. syntax
b. hardware
c. logic
d. fatal

2. A __________ is a single function that the program must perform in order to
satisfy the customer.

a. task
b. software requirement
c. prerequisite
d. predicate

3. A(n) __________ is a set of well-defined logical steps that must be taken to per-
form a task.

a. logarithm
b. plan of action
c. logic schedule
d. algorithm

72 Chapter 2 Input, Processing, and Output

4. An informal language that has no syntax rules, and is not meant to be compiled
or executed is called __________.

a. faux code
b. pseudocode
c. Java
d. a flowchart

5. A __________ is a diagram that graphically depicts the steps that take place in a
program.

a. flowchart
b. step chart
c. code graph
d. program graph

6. A(n) __________ is a set of statements that execute in the order that they appear.

a. serial program
b. sorted code
c. sequence structure
d. ordered structure

7. A __________ is a sequence of characters that is used as data.

a. sequence structure
b. character collection
c. string
d. text block

8. A __________ is a storage location in memory that is represented by a name.

a. variable
b. register
c. RAM slot
d. byte

9. A __________ is any hypothetical person that is using a program and providing
input for it.

a. designer
b. user
c. guinea pig
d. test subject

10. A(n) __________ is a message that tells (or asks) the user to enter a specific value.

a. inquiry
b. input statement
c. directive
d. prompt

11. A(n) __________ sets a variable to a specified value.

a. variable declaration
b. assignment statement
c. math expression
d. string literal

12. In the expression 12 + 7, the values on the right and left of the + symbol are called
__________.

a. operands
b. operators
c. arguments
d. math expressions

13. A(n) __________ operator raises a number to a power.

a. modulus
b. multiplication
c. exponent
d. operand

14. A(n) __________ operator performs division, but instead of returning the quotient
it returns the remainder.

a. modulus
b. multiplication
c. exponent
d. operand

15. A(n) __________ specifies a variable’s name and data type.

a. assignment
b. variable specification
c. variable certification
d. variable declaration

16. Assigning a value to a variable in a declaration statement is called __________.

a. allocation
b. initialization
c. certification
d. programming style

17. A(n) __________ variable is one that has been declared, but has not been initialized
or assigned a value.

a. undefined
b. uninitialized
c. empty
d. default

18. A(n) __________ is a variable whose content has a value that is read only and
cannot be changed during the program’s execution.

a. static variable
b. uninitialized variable
c. named constant
d. locked variable

19. A debugging process in which you imagine that you are the computer executing a
program is called __________.

a. imaginative computing
b. role playing
c. mental simulation
d. hand tracing

Review Questions 73

74 Chapter 2 Input, Processing, and Output

20. Short notes placed in different parts of a program, explaining how those parts of
the program work, are called __________.

a. comments
b. reference manuals
c. tutorials
d. external documentation

True or False

1. Programmers must be careful not to make syntax errors when writing pseudocode
programs.

2. In a math expression, multiplication and division takes place before addition and
subtraction.

3. Variable names can have spaces in them.

4. In most languages, the first character of a variable name cannot be a number.

5. The name gross_pay is written in the camelCase convention.

6. In languages that require variable declarations, a variable’s declaration must
appear before any other statements that use the variable.

7. Uninitialized variables are a common cause of errors.

8. The value of a named constant cannot be changed during the program’s execution.

9. Hand tracing is the process of translating a pseudocode program into machine
language by hand.

10. Internal documentation refers to books and manuals that document a program,
and are intended for use within a company’s programming department.

Short Answer

1. What does a professional programmer usually do first to gain an understanding
of a problem?

2. What is pseudocode?

3. Computer programs typically perform what three steps?

4. What does the term user-friendly mean?

5. What two things must you normally specify in a variable declaration?

6. What value is stored in uninitialized variables?

Algorithm Workbench

1. Design an algorithm that prompts the user to enter his or her height and stores the
user’s input in a variable named height.

2. Design an algorithm that prompts the user to enter his or her favorite color and
stores the user’s input in a variable named color.

3. Write assignment statements that perform the following operations with the
variables a, b, and c.

a. Adds 2 to a and stores the result in b
b. Multiplies b times 4 and stores the result in a
c. Divides a by 3.14 and stores the result in b
d. Subtracts 8 from b and stores the result in a

4. Assume the variables result, w, x, y, and z are all integers, and that w = 5, x =
4, y = 8, and z = 2. What value will be stored in result in each of the following
statements?

a. Set result = x + y
b. Set result = z * 2
c. Set result = y / x
d. Set result = y - z

5. Write a pseudocode statement that declares the variable cost so it can hold real
numbers.

6. Write a pseudocode statement that declares the variable total so it can hold
integers. Initialize the variable with the value 0.

7. Write a pseudocode statement that assigns the value 27 to the variable count.

8. Write a pseudocode statement that assigns the sum of 10 and 14 to the variable
total.

9. Write a pseudocode statement that subtracts the variable downPayment from the
variable total and assigns the result to the variable due.

10. Write a pseudocode statement that multiplies the variable subtotal by 0.15 and
assigns the result to the variable totalfee.

11. If the following pseudocode were an actual program, what would it display?
Declare Integer a = 5
Declare Integer b = 2
Declare Integer c = 3
Declare Integer result

Set result = a + b * c
Display result

12. If the following pseudocode were an actual program, what would it display?
Declare Integer num = 99
Set num = 5
Display num

Review Questions 75

76 Chapter 2 Input, Processing, and Output

Debugging Exercises
1. If the following pseudocode were an actual program, why would it not display the

output that the programmer expects?
Declare String favoriteFood

Display "What is the name of your favorite food?"
Input favoriteFood

Display "Your favorite food is "
Display "favoriteFood"

2. If the programmer translates the following pseudocode to an actual programming
language, a syntax error is likely to occur. Can you find the error?
Declare String 1stPrize

Display "Enter the award for first prize."
Input 1stPrize

Display "The first prize winner will receive ", 1stPrize

3. The following code will not display the results expected by the programmer. Can
you find the error?
Declare Real lowest, highest, average

Display "Enter the lowest score."
Input lowest

Display "Enter the highest score."
Input highest

Set average = low + high / 2
Display "The average is ", average, "."

4. Find the error in the following pseudocode.
Display "Enter the length of the room."
Input length
Declare Integer length

5. Find the error in the following pseudocode.
Declare Integer value1, value2, value3, sum
Set sum = value1 + value2 + value3

Display "Enter the first value."
Input value1

Display "Enter the second value."
Input value2

Display "Enter the third value."
Input value3

Display "The sum of numbers is ", sum

6. Find the error in the following pseudocode.
Declare Real pi
Set 3.14159265 = pi
Display "The value of pi is ", pi

7. Find the error in the following pseudocode.
Constant Real GRAVITY = 9.81
Display "Rates of acceleration of an object in free fall:"
Display "Earth: ", GRAVITY, " meters per second every second."
Set GRAVITY = 1.63
Display "Moon: ", GRAVITY, " meters per second every second."

Programming Exercises
1. Personal Information

Design a program that displays the following information:

• Your name
• Your address, with city, state, and ZIP
• Your telephone number
• Your college major

2. Sales Prediction

A company has determined that its annual profit is typically 23 percent of total
sales. Design a program that asks the user to enter the projected amount of total
sales, and then displays the profit that will be made from that amount.

Hint: Use the value 0.23 to represent 23 percent.

3. Land Calculation

One acre of land is equivalent to 43,560 square feet. Design a program that asks
the user to enter the total square feet in a tract of land and calculates the number
of acres in the tract.

Hint: Divide the amount entered by 43,560 to get the number of acres.

4. Total Purchase

A customer in a store is purchasing five items. Design a program that asks for the
price of each item, and then displays the subtotal of the sale, the amount of sales
tax, and the total. Assume the sales tax is 6 percent.

5. Distance Traveled

Assuming there are no accidents or delays, the distance that a car travels down the
interstate can be calculated with the following formula:

Distance = Speed × Time

A car is traveling at 60 miles per hour. Design a program that displays the following:
● The distance the car will travel in 5 hours
● The distance the car will travel in 8 hours
● The distance the car will travel in 12 hours

6. Sales Tax

Design a program that will ask the user to enter the amount of a purchase. The
program should then compute the state and county sales tax. Assume the state

Programming Exercises 77

78 Chapter 2 Input, Processing, and Output

sales tax is 4 percent and the county sales tax is 2 percent. The program should dis-
play the amount of the purchase, the state sales tax, the county sales tax, the total
sales tax, and the total of the sale (which is the sum of the amount of purchase plus
the total sales tax).

Hint: Use the value 0.02 to represent 2 percent, and 0.04 to represent 4 percent.

7. Miles-per-Gallon

A car’s miles-per-gallon (MPG) can be calculated with the following formula:

MPG = Miles driven / Gallons of gas used

Design a program that asks the user for the number of miles driven and the gallons
of gas used. It should calculate the car’s miles-per-gallon and display the result on
the screen.

8. Tip, Tax, and Total

Design a program that calculates the total amount of a meal purchased at a restau-
rant. The program should ask the user to enter the charge for the food, and then
calculate the amount of a 15 percent tip and 7 percent sales tax. Display each of
these amounts and the total.

9. Celsius to Fahrenheit Temperature Converter

Design a program that converts Celsius temperatures to Fahrenheit temperatures.
The formula is as follows:

The program should ask the user to enter a temperature in Celsius, and then
display the temperature converted to Fahrenheit.

10. Stock Transaction Program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details
of the purchase:

• The number of shares that Joe purchased was 1,000.
• When Joe purchased the stock, he paid $32.87 per share.
• Joe paid his stockbroker a commission that amounted to 2 percent of the

amount he paid for the stock.

Two weeks later Joe sold the stock. Here are the details of the sale:

• The number of shares that Joe sold was 1,000.
• He sold the stock for $33.92 per share.
• He paid his stockbroker another commission that amounted to 2 percent of

the amount he received for the stock.

Design a program that displays the following information:
● The amount of money Joe paid for the stock.
● The amount of commission Joe paid his broker when he bought the stock.
● The amount that Joe sold the stock for.
● The amount of commission Joe paid his broker when he sold the stock.
● Did Joe make money or lose money? Display the amount of profit or loss after

Joe sold the stock and paid his broker (both times).

F C= +9
5

32

The Tip, Tax, and
Total Problem

VideoNote

79

TOPICS

3.1 Introduction to Modules

3.2 Defining and Calling a Module

3.3 Local Variables

3.4 Passing Arguments to Modules

3.5 Global Variables and Global Constants

Modules

3.1 Introduction to Modules

CONCEPT: A module is a group of statements that exist within a program for the
purpose of performing a specific task.

In Chapter 1 you learned that a program is a set of instructions that a computer fol-
lows to perform a task. Then, in Chapter 2 you saw a simple program that performs
the task of calculating an employee’s pay. Recall that the program multiplied the
number of hours that the employee worked by the employee’s hourly pay rate. A
more realistic payroll program, however, would do much more than this. In a real-
world application, the overall task of calculating an employee’s pay would consist of
several subtasks, such as the following:

● Getting the employee’s hourly pay rate
● Getting the number of hours worked
● Calculating the employee’s gross pay
● Calculating overtime pay
● Calculating withholdings for taxes and benefits
● Calculating the net pay
● Printing the paycheck

Most programs perform tasks that are large enough to be broken down into several
subtasks. For this reason, programmers usually break down their programs into mod-
ules. A module is a group of statements that exist within a program for the purpose

C
H

A
P

T
E

R

3

79

80 Chapter 3 Modules

of performing a specific task. Instead of writing a large program as one long sequence
of statements, it can be written as several small modules, each one performing a spe-
cific part of the task. These small modules can then be executed in the desired order to
perform the overall task.

This approach is sometimes called divide and conquer because a large task is divided
into several smaller tasks that are easily performed. Figure 3-1 illustrates this idea by
comparing two programs: one that uses a long, complex sequence of statements to
perform a task, and another that divides a task into smaller tasks, each of which are
performed by a separate module.

When using modules in a program, you generally isolate each task within the program
in its own module. For example, a realistic pay calculating program might have the fol-
lowing modules:

● A module that gets the employee’s hourly pay rate
● A module that gets the number of hours worked
● A module that calculates the employee’s gross pay
● A module that calculates the overtime pay
● A module that calculates the withholdings for taxes and benefits
● A module that calculates the net pay
● A module that prints the paycheck

Although every modern programming language allows you to create modules, they are
not always referred to as modules. Modules are commonly called procedures,
subroutines, subprograms, methods, and functions. (A function is a special type of
module that we will discuss in Chapter 6.)

Benefits of Using Modules
A program benefits in the following ways when it is modularized:

Simpler Code

A program’s code tends to be simpler and easier to understand when it is mod-
ularized. Several small modules are much easier to read than one long sequence of
statements.

Code Reuse

Modules also reduce the duplication of code within a program. If a specific operation
is performed in several places in a program, a module can be written once to perform
that operation, and then be executed any time it is needed. This benefit of using mod-
ules is known as code reuse because you are writing the code to perform a task once
and then reusing it each time you need to perform the task.

Better Testing

When each task within a program is contained in its own module, testing and debug-
ging become simpler. Programmers can test each module in a program individually, to
determine whether it correctly performs its operation. This makes it easier to isolate
and fix errors.

3.1 Introduction to Modules 81

statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement

This program is one long, complex
sequence of statements.

In this program the task has been divided into
smaller tasks, each of which is performed by a

separate module.

statement
statement
statement

module

statement
statement
statement

module

statement
statement
statement

module

statement
statement
statement

module

Figure 3-1 Using modules to divide and conquer a large task

Faster Development

Suppose a programmer or a team of programmers is developing multiple programs.
They discover that each of the programs performs several common tasks, such as ask-
ing for a username and a password, displaying the current time, and so on. It doesn’t
make sense to write the code for these tasks multiple times. Instead, modules can be
written for the commonly needed tasks, and those modules can be incorporated into
each program that needs them.

Easier Facilitation of Teamwork

Modules also make it easier for programmers to work in teams. When a program is
developed as a set of modules that each performs an individual task, then different
programmers can be assigned the job of writing different modules.

Checkpoint

3.1 What is a module?

3.2 What is meant by the phrase “divide and conquer”?

3.3 How do modules help you reuse code in a program?

82 Chapter 3 Modules

3.4 How can modules make the development of multiple programs faster?

3.5 How can modules make it easier for programs to be developed by teams of
programmers?

3.2 Defining and Calling a Module

CONCEPT: The code for a module is known as a module definition. To execute the
module, you write a statement that calls it.

Module Names
Before we discuss the process of creating and using modules, we should mention a
few things about module names. Just as you name the variables that you use in a pro-
gram, you also name the modules. A module’s name should be descriptive enough so
that anyone reading your code can reasonably guess what the module does.

Because modules perform actions, most programmers prefer to use verbs in module
names. For example, a module that calculates gross pay might be named
calculateGrossPay. This name would make it evident to anyone reading the code
that the module calculates something. What does it calculate? The gross pay, of
course. Other examples of good module names would be getHours, getPayRate,
calculateOvertime, printCheck, and so on. Each module name describes what the
module does.

When naming a module, most languages require that you follow the same rules that
you follow when naming variables. This means that module names cannot contain
spaces, cannot typically contain punctuation characters, and usually cannot begin with
a number. These are only general rules, however. The specific rules for naming a mod-
ule will vary slightly with each programming language. (Recall that we discussed the
common variable naming rules in Chapter 2.)

Defining and Calling a Module
To create a module you write its definition. In most languages, a module definition has
two parts: a header and a body. The header indicates the starting point of the module,
and the body is a list of statements that belong to the module. Here is the general for-
mat that we will follow when we write a module definition in pseudocode:

Module name()
statement
statement
etc.

End Module

The first line is the module header. In our pseudocode the header begins with the
word Module, followed by the name of the module, followed by a set of parentheses.
It is a common practice in most programming languages to put a set of parentheses

⎫
⎬ These statements are the body of the module.

⎭

Defining and Calling
a Module

VideoNote

3.2 Defining and Calling a Module 83

after a module name. Later in this chapter, you will see the actual purpose of the
parentheses, but for now, just remember that they come after the module name.

Beginning at the line after the module header, one or more statements will appear.
These statements are the module’s body, and are performed any time the module is
executed. The last line of the definition, after the body, reads End Module. This line
marks the end of the module definition.

Let’s look at an example. Keep in mind that this is not a complete program. We will
show the entire pseudocode program in a moment.

Module showMessage()

Display "Hello world."

End Module

This pseudocode defines a module named showMessage. As its name implies, the pur-
pose of this module is to show a message on the screen. The body of the
showMessage module contains one statement: a Display statement that displays the
message “Hello world.”

Notice in the previous example that the statement in the body of the module is
indented. Indenting the statements in the body of a module is not usually required,1

but it makes your code much easier to read. By indenting the statements inside a mod-
ule, you visually set them apart. As a result, you can tell at a glance which statements
are inside the module. This practice is a programming style convention that virtually
all programmers follow.

Calling a Module

A module definition specifies what a module does, but it does not cause the module to
execute. To execute a module, we must call it. In pseudocode we will use the word
Call to call a module. This is how we would call the showMessage module:

Call showMessage()

When a module is called, the computer jumps to that module and executes the state-
ments in the module’s body. Then, when the end of the module is reached, the com-
puter jumps back to the part of the program that called the module, and the program
resumes execution at that point.

To fully demonstrate how module calling works, we will look at Program 3-1.

Program 3-1

1 Module main()
2 Display "I have a message for you."
3 Call showMessage()
4 Display "That's all, folks!"
5 End Module
6

1The Python language requires you to indent the statements inside a module.

84 Chapter 3 Modules

7 Module showMessage()
8 Display "Hello world"
9 End Module

Program Output

I have a message for you.
Hello world
That's all, folks!

First, notice that Program 3-1 has two modules: a module named main appears in
lines 1 through 5, and the showMessage module appears in lines 7 through 9. Many
programming languages require that programs have a main module. The main mod-
ule is the program’s starting point, and it generally calls other modules. When the end
of the main module is reached, the program stops executing. In this book, any time
you see a pseudocode program with a module named main, we are using that mod-
ule as the program’s starting point. Likewise, when the end of the main module is
reached, the program will stop executing. This is shown in Figure 3-2.

Module main()
 Display "I have a message for you."
 Call showMessage()
 Display "That's all, folks!"
End Module

Module showMessage()
 Display "Hello world"
End Module

The program begins
executing at the
main module.

When the end of the
main module is reached,

the program stops executing.

Figure 3-2 The main module

NOTE: Many languages, including Java, C, and C++, require that the main module
actually be named main, as we have shown in Program 3-1.

Let’s step through the program. When the program runs, the main module starts and
the statement in line 2 displays “I have a message for you.” Then, line 3 calls the
showMessage module. As shown in Figure 3-3, the computer jumps to the showMes-
sage module and executes the statements in its body. There is only one statement in
the body of the showMessage module: the Display statement in line 8. This state-
ment displays “Hello world” and then the module ends. As shown in Figure 3-4, the
computer jumps back to the part of the program that called showMessage, and

3.2 Defining and Calling a Module 85

Module main()
 Display "I have a message for you."
 Call showMessage()
 Display "That's all, folks!"
End Module

Module showMessage()
 Display "Hello world"
End Module

The computer jumps to
the showMessage module

and executes the statements
in its body.

Figure 3-3 Calling the showMessage module

Module main()
 Display "I have a message for you."
 Call showMessage()
 Display "That's all, folks!"
End Module

Module showMessage()
 Display "Hello world"
End Module

When the showMessage module
ends, the computer jumps back
to the part of the program that

called it, and resumes execution
from that point.

Figure 3-4 The showMessage module returns

When the computer encounters a module call, such as the one in line 3 of Program 3-1,
it has to perform some operations “behind the scenes” so it will know where to return
after the module ends. First, the computer saves the memory address of the location
that it should return to. This is typically the statement that appears immediately after
the module call. This memory location is known as the return point. Then, the com-
puter jumps to the module and executes the statements in its body. When the module
ends, the computer jumps back to the return point and resumes execution.

NOTE : When a program calls a module, programmers commonly say that the
control of the program transfers to that module. This simply means that the module
takes control of the program’s execution.

Flowcharting a Program with Modules
In a flowchart, a module call is shown with a rectangle that has vertical bars at each
side, as shown in Figure 3-5. The name of the module that is being called is written on
the symbol. The example shown in Figure 3-5 shows how we would represent a call to
the showMessage module.

resumes execution from that point. In this case, the program resumes execution at
line 4, which displays “That’s all folks!” The main module ends at line 5, so the pro-
gram stops executing.

86 Chapter 3 Modules

showMessage()

Figure 3-5 Module call symbol

End

main()

Display "I have a
message for you."

Display "That's all,
folks!"

showMessage()

Display "Hello world"

Return
showMessage()

Figure 3-6 Flowchart for Program 3-1

When drawing a flowchart for a module, the starting terminal symbol usually shows
the name of the module. The ending terminal symbol in the main module reads End
because it marks the end of the program’s execution. The ending terminal symbol for
all other modules reads Return because it marks the point where the computer returns
to the part of the program that called the module.

Top-Down Design
In this section, we have discussed and demonstrated how modules work. You’ve seen
how the computer jumps to a module when it is called, and returns to the part of the
program that called the module when the module ends. It is important that you under-
stand these mechanical aspects of modules.

Programmers typically draw a separate flowchart for each module in a program.
For example, Figure 3-6 shows how Program 3-1 would be flowcharted. Notice that
the figure shows two flowcharts: one for the main module and another for the
showMessage module.

3.2 Defining and Calling a Module 87

Just as important as understanding how modules work is understanding how to design
a modularized program. Programmers commonly use a technique known as top-down
design to break down an algorithm into modules. The process of top-down design is
performed in the following manner:

● The overall task that the program is to perform is broken down into a series of
subtasks.

● Each of the subtasks is examined to determine whether it can be further broken
down into more subtasks. This step is repeated until no more subtasks can be
identified.

● Once all of the subtasks have been identified, they are written in code.

This process is called top-down design because the programmer begins by looking at
the topmost level of tasks that must be performed, and then breaks down those tasks
into lower levels of subtasks.

NOTE: The top-down design process is sometimes called stepwise refinement.

main()

calculateGrossPay()

getHoursWorked() getHourlyPayRate()

getInput() calculateOvertime()

calculateTaxes() calculateBenefits()

calculateWithholdings() calculateNetPay()

Figure 3-7 A hierarchy chart

Hierarchy Charts
Flowcharts are good tools for graphically depicting the flow of logic inside a module,
but they do not give a visual representation of the relationships between modules. Pro-
grammers commonly use hierarchy charts for this purpose. A hierarchy chart, which is
also known as a structure chart, shows boxes that represent each module in a program.
The boxes are connected in a way that illustrates their relationship to one another.
Figure 3-7 shows an example of a hierarchy chart for a pay calculating program.

The chart shown in Figure 3-7 shows the main module as the topmost module in the
hierarchy. The main module calls five other modules: getInput, calculateGrossPay,
calculateOvertime, calculateWithholdings, and calculateNetPay.
The getInput module calls two additional modules: getHoursWorked and
getHourlyPayRate. The calculateWithholdings module also calls two modules:
calculateTaxes and calculateBenefits.

88 Chapter 3 Modules

Notice that the hierarchy chart does not show the steps that are taken inside a module.
Because hierarchy charts do not reveal any details about how modules work, they do
not replace flowcharts or pseudocode.

In the Spotlight:
Defining and Calling Modules
Professional Appliance Service, Inc. offers maintenance and repair services for house-
hold appliances. The owner wants to give each of the company’s service technicians
a small handheld computer that displays step-by-step instructions for many of the
repairs that they perform. To see how this might work, the owner has asked you to
develop a program that displays the following instructions for disassembling an
ACME laundry dyer:

Step 1: Unplug the dryer and move it away from the wall.
Step 2: Remove the six screws from the back of the dryer.
Step 3: Remove the dryer’s back panel.
Step 4: Pull the top of the dryer straight up.

During your interview with the owner, you determine that that the program should dis-
play the steps one at a time. You decide that after each step is displayed, the user will
be asked to press a key to see the next step. Here is the algorithm for the program:

1. Display a starting message, explaining what the program does.
2. Ask the user to press a key to see Step 1.
3. Display the instructions for Step 1.
4. Ask the user to press a key to see the next step.
5. Display the instructions for Step 2.
6. Ask the user to press a key to see the next step.
7. Display the instructions for Step 3.
8. Ask the user to press a key to see the next step.
9. Display the instructions for Step 4.

This algorithm lists the top level of tasks that the program needs to perform, and be-
comes the basis of the program’s main module. Figure 3-8 shows the program’s struc-
ture in a hierarchy chart.

main()

starting
Message()

step1() step3()step2() step4()

Figure 3-8 Hierarchy chart for the program

As you can see from the hierarchy chart, the main module will call several other mod-
ules. Here are summaries of those modules:

● startingMessage—This module will display the starting message that tells the
technician what the program does.

● step1—This module will display the instructions for Step 1.
● step2—This module will display the instructions for Step 2.
● step3—This module will display the instructions for Step 3.
● step4—This module will display the instructions for Step 4.

Between calls to these modules, the main module will instruct the user to press a key
to see the next step in the instructions. Program 3-2 shows the pseudocode for the
program. Figure 3-9 shows the flowchart for the main module, and Figure 3-10
shows the flowcharts for the startingMessage, step1, step2, step3, and step4
modules.

Program 3-2

1 Module main()
2 // Display the starting message.
3 Call startingMessage()
4 Display "Press a key to see Step 1."
5 Input
6
7 // Display Step 1.
8 Call step1()
9 Display "Press a key to see Step 2."
10 Input
11
12 // Display Step 2.
13 Call step2()
14 Display "Press a key to see Step 3."
15 Input
16
17 // Display Step 3.
18 Call step3()
19 Display "Press a key to see Step 4."
20 Input
21
22 // Display Step 4.
23 Call step4()
24 End Module
25
26 // The startingMessage module displays
27 // the program's starting message.
28 Module startingMessage()
29 Display "This program tells you how to"
30 Display "disassemble an ACME laundry dryer."
31 Display "There are 4 steps in the process."
32 End Module
33
34 // The step1 module displays the instructions
35 // for Step 1.

3.2 Defining and Calling a Module 89

36 Module step1()
37 Display "Step 1: Unplug the dryer and"
38 Display "move it away from the wall."
39 End Module
40
41 // The step2 module displays the instructions
42 // for Step 2.
43 Module step2()
44 Display "Step 2: Remove the six screws"
45 Display "from the back of the dryer."
46 End Module
47
48 // The step3 module displays the instructions
49 // for Step 3.
50 Module step3()
51 Display "Step 3: Remove the dryer's"
52 Display "back panel."
53 End Module
54
55 // The step4 module displays the instructions
56 // for Step 4.
57 Module step4()
58 Display "Step 4: Pull the top of the"
59 Display "dryer straight up."
60 End Module

Program Output

90 Chapter 3 Modules

This program tells you how to
disassemble an ACME laundry dryer.
There are 4 steps in the process.
Press a key to see Step 1.
[Enter]
Step 1: Unplug the dryer and
move it away from the wall.
Press a key to see Step 2.
[Enter]
Step 2: Remove the six screws
from the back of the dryer.
Press a key to see Step 3.
[Enter]
Step 3: Remove the dryer's
back panel.
Press a key to see Step 4.
[Enter]
Step 4: Pull the top of the
dryer straight up.

NOTE: Lines 5, 10, 15, and 20 show an Input statement with no variable speci-
fied. In our pseudocode, this is the way we will read a keystroke from the keyboard
without saving the character that was pressed. Most programming languages pro-
vide a way to do this.

main()

startingMessage()

step1()

Display "Press a key to
see Step 1."

Input

A End

step3()

step4()

Display "Press a key to
see Step 4."

Input

B

step2()

Display "Press a key to
see Step 2."

Input

Display "Press a key to
see Step 3."

Input

B

A

Figure 3-9 Flowchart for the main module in Program 3-2

3.2 Defining and Calling a Module 91

Figure 3-10 Flowcharts for the other modules in Program 3-2

Checkpoint

3.6 In most languages, a module definition has what two parts?

3.7 What does the phrase “calling a module” mean?

3.8 When a module is executing, what happens when the end of the module is reached?

3.9 Describe the steps involved in the top-down design process.

3.3 Local Variables

CONCEPT: A local variable is declared inside a module and cannot be accessed by
statements that are outside the module. Different modules can have lo-
cal variables with the same names because the modules cannot see each
other’s local variables.

In most programming languages, a variable that is declared inside a module is called
a local variable. A local variable belongs to the module in which it is declared, and

92 Chapter 3 Modules

startingMessage()

Display "This program
tells you how to"

Display "disassemble an
ACME laundry dryer."

Display "There are 4 steps
in the process."

Return

Return

Display "back panel."

step1()

Display "Step 1: Unplug
the dryer and"

Display "move it away
from the wall."

Return

step3()

Display "Step 3: Remove
the dryer’s"

Return

Display "dryer straight up."

step2()

Display "Step 2: Remove
the six screws"

Display "from the back of
the dryer."

Return

step4()

Display "Step 4: Pull the
top of the"

3.3 Local Variables 93

only statements inside that module can access the variable. (The term local is meant
to indicate that the variable can be used only locally, within the module in which it is
declared.)

An error will occur if a statement in one module tries to access a local variable that be-
longs to another module. For example, look at the pseudocode in Program 3-3.

Program 3-3

1 Module main()
2 Call getName()
3 Display "Hello ", name This will cause an error!
4 End Module
5
6 Module getName()
7 Declare String name This is local variable.
8 Display "Enter your name."
9 Input name
10 End Module

The name variable is declared in line 7, inside the getName module. Because it is
declared inside the getName module, it is a local variable belonging to that module.
Line 8 prompts the user to enter his or her name, and the Input statement in line 9
stores the user’s input in the name variable.

The main module calls the getName module in line 2. Then, the Display statement
in line 3 tries to access the name variable. This results in an error because the name
variable is local to the getName module, and statements in the main module cannot
access it.

Scope and Local Variables
Programmers commonly use the term scope to describe the part of a program in which
a variable may be accessed. A variable is visible only to statements inside the variable’s
scope.

A local variable’s scope usually begins at the variable’s declaration and ends at the
end of the module in which the variable is declared. The variable cannot be accessed
by statements that are outside this region. This means that a local variable cannot be
accessed by code that is outside the module, or inside the module but before the vari-
able’s declaration. For example, look at the following code. It has an error because
the Input statement tries to store a value in the name variable, but the statement is
outside the variable’s scope. Moving the variable declaration to a line before the
Input statement will fix this error.

Module getName()
Display "Enter your name."
Input name This statement will cause an error because
Declare String name the name variable has not been declared yet.

End Module

94 Chapter 3 Modules

Duplicate Variable Names
In most programming languages, you cannot have two variables with the same name in
the same scope. For example, look at the following module:

Module getTwoAges()
Declare Integer age
Display "Enter your age."
Input age

Declare Integer age This will cause an error!
Display "Enter your pet's age." A variable named age has
Input age already been declared.

End Module

This module declares two local variables named age. The second variable declaration
will cause an error because a variable named age has already been declared in the
module. Renaming one of the variables will fix this error.

Although you cannot have two local variables with the same name in the same mod-
ule, it is usually okay for a local variable in one module to have the same name as a
local variable in a different module. For example, suppose a program has two mod-
ules: getPersonAge and getPetAge. It would be legal for both modules to have a
local variable named age.

Checkpoint

3.10 What is a local variable? How is access to a local variable restricted?

3.11 What is a variable’s scope?

3.12 Is it usually permissible to have more than one variable with the same name in
the same scope? Why or why not?

3.13 Is it usually permissible for a local variable in one module to have the same
name as a local variable in a different module?

3.4 Passing Arguments to Modules

CONCEPT: An argument is any piece of data that is passed into a module when the
module is called. A parameter is a variable that receives an argument
that is passed into a module.

Sometimes it is useful not only to call a module, but also to send one or more pieces of
data into the module. Pieces of data that are sent into a module are known as
arguments. The module can use its arguments in calculations or other operations.

T IP : You cannot have two variables with the same name in the same module
because the compiler or interpreter would not know which variable to use when a
statement tries to access one of them. All variables that exist within the same scope
must have unique names.

Passing Arguments
to a Module

VideoNote

3.4 Passing Arguments to Modules 95

If you want a module to receive arguments when it is called, you must equip the mod-
ule with one or more parameter variables. A parameter variable, often simply called
a parameter, is a special variable that receives an argument when a module is called.
Here is an example of a pseudocode module that has a parameter variable:

Module doubleNumber(Integer value)
Declare Integer result
Set result = value * 2
Display result

End Module

This module’s name is doubleNumber. Its purpose is to accept an integer number as
an argument and display the value of that number doubled. Look at the module
header and notice the words Integer value that appear inside the parentheses. This
is the declaration of a parameter variable. The parameter variable’s name is value
and its data type is Integer. The purpose of this variable is to receive an Integer
argument when the module is called. Program 3-4 demonstrates the module in a com-
plete program.

Program 3-4

1 Module main()
2 Call doubleNumber(4)
3 End Module
4
5 Module doubleNumber(Integer value)
6 Declare Integer result
7 Set result = value * 2
8 Display result
9 End Module

Program Output

8

When this program runs, the main module will begin executing. The statement in line
2 calls the doubleNumber module. Notice that the number 4 appears inside the
parentheses. This is an argument that is being passed to the doubleNumber module.
When this statement executes, the doubleNumber module will be called with the
number 4 copied into the value parameter variable. This is shown in Figure 3-11.

Module main()
 Call doubleNumber(4)
End Module

Module doubleNumber(Integer value)
 Declare Integer result
 Set result = value * 2
 Display result
End Module

The argument 4 is copied into
the value parameter variable.

Figure 3-11 The argument 4 is copied into the value parameter variable

96 Chapter 3 Modules

Let’s step through the doubleNumber module. As we do, remember that the value
parameter variable will contain the number that was passed into it as an argument.
In this program, that number is 4.

Line 6 declares a local Integer variable named result. Then, line 7 assigns the
value of the expression value * 2 to result. Because the value variable contains 4,
this line assigns 8 to result. Line 8 displays the contents of the result variable. The
module ends at line 9.

For example, if we had called the module as follows:

Call doubleNumber(5)

the module would have displayed 10.

We can also pass the contents of a variable as an argument. For example, look at Pro-
gram 3-5. The main module declares an Integer variable named number in line 2.
Lines 3 and 4 prompt the user to enter a number, and line 5 reads the user’s input into
the number variable. Notice that in line 6 number is passed as an argument to the
doubleNumber module, which causes the number variable’s contents to be copied
into the value parameter variable. This is shown in Figure 3-12.

Program 3-5

1 Module main()
2 Declare Integer number
3 Display "Enter a number and I will display"
4 Display "that number doubled."
5 Input number
6 Call doubleNumber(number)
7 End Module
8
9 Module doubleNumber(Integer value)
10 Declare Integer result
11 Set result = value * 2
12 Display result
13 End Module

Program Output (with Input Shown in Bold)

Enter a number and I will display
that number doubled.
20 [Enter]
40

Argument and Parameter Compatibility
When you pass an argument to a module, most programming languages require that
the argument and the receiving parameter variable be of the same data type. If you
try to pass an argument of one type into a parameter variable of another type, an
error usually occurs. For example, Figure 3-13 shows that you cannot pass a real
number or a Real variable into an Integer parameter.

3.4 Passing Arguments to Modules 97

Parameter Variable Scope
Earlier in this chapter, you learned that a variable’s scope is the part of the program in
which the variable may be accessed. A variable is visible only to statements inside the
variable’s scope. A parameter variable’s scope is usually the entire module in which
the parameter is declared. No statement outside the module can access the parameter
variable.

Passing Multiple Arguments
Most languages allow you to write modules that accept multiple arguments. Program 3-6
shows a pseudocode module named showSum, that accepts two Integer arguments.
The module adds the two arguments and displays their sum.

 Call doubleNumber(55.9)

Module doubleNumber(Integer value)
 Declare Integer result
 Set result = value * 2
 Display result
End Module

55.9X
 Declare Real number = 24.7
 Call doubleNumber(number)

Module doubleNumber(Integer value)
 Declare Integer result
 Set result = value * 2
 Display result
End Module

24.7X
Error!

Error!

Figure 3-13 Arguments and parameter variables must be of the same type

Module main()
 Declare Integer number
 Display "Enter a number and I will display"
 Display "that number doubled."
 Input number
 Call doubleNumber(number)
End Module

Module doubleNumber(Integer value)
 Declare Integer result
 Set result = value * 2
 Display result
End Module

The contents of the number
variable are copied into the
value parameter variable.20

Figure 3-12 The contents of the number variable passed as an argument

NOTE: Some languages allow you to pass an argument into a parameter variable
of a different type as long as no data will be lost. For example, some languages allow
you to pass integer arguments into real parameters because real variables can hold
whole numbers. If you pass a real argument, such as 24.7, into an integer parameter,
the fractional part of the number would be lost.

98 Chapter 3 Modules

Program 3-6

1 Module main()
2 Display "The sum of 12 and 45 is:"
3 Call showSum(12, 45)
4 End Module
5
6 Module showSum(Integer num1, Integer num2)
7 Declare Integer result
8 Set result = num1 + num2
9 Display result
10 End Module

Program Output

The sum of 12 and 45 is:
57

Notice that two parameter variables, num1 and num2, are declared inside the parenthe-
ses in the module header. This is often referred to as a parameter list. Also notice that a
comma separates the declarations.

The statement in line 3 calls the showSum module and passes two arguments: 12 and
45. The arguments are passed into the parameter variables in the order that they
appear in the module call. In other words, the first argument is passed into the first
parameter variable, and the second argument is passed into the second parameter vari-
able. So, this statement causes 12 to be passed into the num1 parameter and 45 to be
passed into the num2 parameter, as shown in Figure 3-14.

Module main()
 Display "The sum of 12 and 45 is:"
 Call showSum(12, 45)
End Module

Module showSum(Integer num1, Integer num2)
 Declare Integer result
 Set result = num1 + num2
 Display result
End Module

Figure 3-14 Two arguments passed into two parameters

Suppose we were to reverse the order in which the arguments are listed in the module
call, as shown here:

Call showSum(45, 12)

This would cause 45 to be passed into the num1 parameter and 12 to be passed into
the num2 parameter. The following pseudocode code shows one more example. This
time we are passing variables as arguments.

3.4 Passing Arguments to Modules 99

Declare Integer value1 = 2
Declare Integer value2 = 3
Call showSum(value1, value2)

When the showSum method executes as a result of this code, the num1 parameter will
contain 2 and the num2 parameter will contain 3.

In the Spotlight:
Passing an Argument to a Module
Your friend Michael runs a catering company. Some of the ingredients that his recipes
require are measured in cups. When he goes to the grocery store to buy those ingredi-
ents, however, they are sold only by the fluid ounce. He has asked you to write a sim-
ple program that converts cups to fluid ounces.

You design the following algorithm:

1. Display an introductory screen that explains what the program does.
2. Get the number of cups.
3. Convert the number of cups to fluid ounces and display the result.

This algorithm lists the top level of tasks that the program needs to perform, and be-
comes the basis of the program’s main module. Figure 3-15 shows the program’s struc-
ture in a hierarchy chart.

main()

showIntro() cupsToOunces
(Real cups)

Figure 3-15 Hierarchy chart for the program

As shown in the hierarchy chart, the main module will call two other modules.

Here are summaries of those modules:

● showIntro—This module will display a message on the screen that explains
what the program does.

● cupsToOunces—This module will accept the number of cups as an argument and
calculate and display the equivalent number of fluid ounces.

In addition to calling these modules, the main module will ask the user to enter the
number of cups. This value will be passed to the cupsToOunces module. Program 3-7
shows the pseudocode for the program, and Figure 3-16 shows a flowchart.

100 Chapter 3 Modules

Program 3-7

1 Module main()
2 // Declare a variable for the
3 // number of cups needed.
4 Declare Real cupsNeeded
5
6 // Display an intro message.
7 Call showIntro()
8
9 // Get the number of cups.
10 Display "Enter the number of cups."
11 Input cupsNeeded
12
13 // Convert cups to ounces.
14 Call cupsToOunces(cupsNeeded)
15 End Module
16
17 // The showIntro module displays an
18 // introductory screen.
19 Module showIntro()
20 Display "This program converts measurements"
21 Display "in cups to fluid ounces. For your"
22 Display "reference the formula is:"
23 Display " 1 cup = 8 fluid ounces."
24 End Module
25
26 // The cupsToOunces module accepts a number
27 // of cups and displays the equivalent number
28 // of ounces.
29 Module cupsToOunces(Real cups)
30 // Declare variables.
31 Declare Real ounces
32
33 // Convert cups to ounces.
34 Set ounces = cups * 8
35
36 // Display the result.
37 Display "That converts to ",
38 ounces, " ounces."
39 End Module

Program Output (with Input Shown in Bold)

This program converts measurements
in cups to fluid ounces. For your
reference the formula is:

1 cup = 8 fluid ounces.
Enter the number of cups.
2 [Enter]
That converts to 16 ounces.

3.4 Passing Arguments to Modules 101

End

showIntro()

cupsToOunces(
 cupsNeeded)

Input cupsNeeded

Display "Enter the
number of cups."

main()

Declare Real
cupsNeeded

cupsToOunces
(cups)

Declare Real ounces

Set ounces =
cups * 8

Display "That converts
to ", ounces, " ounces."

Return

Display "This program
converts measurements"

Return

Display "in cups to fluid
ounces. For your"

showIntro()

Display " 1 cup = 8 fluid
ounces. "

Display "reference the
formula is:"

Figure 3-16 Flowchart for Program 3-7

Passing Arguments by Value and by Reference
Many programming languages provide two different ways to pass arguments: by value
and by reference. Before studying these techniques in detail, we should mention that
different languages have their own way of doing each. In this book, we will teach you
the fundamental concepts behind these techniques, and show you how to model them
in pseudocode. When you begin to use these techniques in an actual language, you will
need to learn the details of how they are carried out in that language.

Passing Arguments by Value

All of the example programs that we have looked at so far pass arguments by value. Argu-
ments and parameter variables are separate items in memory. Passing an argument by
value means that only a copy of the argument’s value is passed into the parameter variable.
If the contents of the parameter variable are changed inside the module, it has no effect on
the argument in the calling part of the program. For example, look at Program 3-8.

102 Chapter 3 Modules

Program 3-8

1 Module main()
2 Declare Integer number = 99
3
4 // Display the value stored in number.
5 Display "The number is ", number
6
7 // Call the changeMe module, passing
8 // the number variable as an argument.
9 Call changeMe(number)
10
11 // Display the value of number again.
12 Display "The number is", number
13 End Module
14
15 Module changeMe(Integer myValue)
16 Display "I am changing the value."
17
18 // Set the myValue parameter variable
19 // to 0.
20 Set myValue = 0
21
22 // Display the value in myValue.
23 Display "Now the number is ", myValue
24 End Module

Program Output

The number is 99
I am changing the value.
Now the number is 0
The number is 99

The main module declares a local variable named number in line 2, and initializes it
to the value 99. As a result, the Display statement in line 5 displays “The number is
99.” The number variable’s value is then passed as an argument to the changeMe
module in line 9. This means that in the changeMe module the value 99 will be copied
into the myValue parameter variable.

Inside the changeMe module, in line 20, the myValue parameter variable is set to 0.
As a result, the Display statement in line 23 displays “Now the number is 0.” The
module ends, and control of the program returns to the main module.

The next statement to execute is the Display statement in line 12. This statement
displays “The number is 99.” Even though the parameter variable myValue was
changed in the changeMe method, the argument (the number variable in main) was
not modified.

Passing an argument is a way that one module can communicate with another module.
When the argument is passed by value, the communication channel works in only
one direction: the calling module can communicate with the called module. The
called module, however, cannot use the argument to communicate with the calling
module.

3.4 Passing Arguments to Modules 103

Passing Arguments by Reference

Passing an argument by reference means that the argument is passed into a special type
of parameter known as a reference variable. When a reference variable is used as a pa-
rameter in a module, it allows the module to modify the argument in the calling part of
the program.

A reference variable acts as an alias for the variable that was passed into it as an argu-
ment. It is called a reference variable because it references the other variable. Anything
that you do to the reference variable is actually done to the variable it references.

Reference variables are useful for establishing two-way communication between mod-
ules. When a module calls another module and passes a variable by reference, commu-
nication between the modules can take place in the following ways:

● The calling module can communicate with the called module by passing an
argument.

● The called module can communicate with the calling module by modifying the
value of the argument via the reference variable.

In pseudocode we will declare that a parameter is a reference variable by writing the
word Ref before the parameter variable’s name in the module header. For example,
look at the following pseudocode module:

Module setToZero(Integer Ref value)
Set value = 0

End Module

The word Ref indicates that value is a reference variable. The module stores 0 in the
value parameter. Because value is a reference variable, this action is actually per-
formed on the variable that was passed to the module as an argument. Program 3-9
demonstrates this module.

Program 3-9

1 Module main()
2 // Declare and initialize some variables.
3 Declare Integer x = 99
4 Declare Integer y = 100
5 Declare Integer z = 101
6
7 // Display the values in those variables.
8 Display "x is set to ", x
9 Display "y is set to ", y
10 Display "z is set to ", z
11
12 // Pass each variable to setToZero.
13 Call setToZero(x)
14 Call setToZero(y)
15 Call setToZero(z)
16
17 // Display the values now.
18 Display "----------------"
19 Display "x is set to ", x

104 Chapter 3 Modules

20 Display "y is set to ", y
21 Display "z is set to ", z
22 End Module
23
24 Module setToZero(Integer Ref value)
25 Set value = 0
26 End Module

Program Output

x is set to 99
y is set to 100
z is set to 101

x is set to 0
y is set to 0
z is set to 0

In the main module the variable x is initialized with 99, the variable y is initialized
with 100, and the variable z is initialized with 101. Then, in lines 13 through 15
those variables are passed as arguments to the setToZero module. Each time
setToZero is called, the variable that is passed as an argument is set to 0. This is
shown when the values of the variables are displayed in lines 19 through 21.

In the Spotlight:
Passing an Argument by Reference
In the previous In the Spotlight case study, we developed a program that your friend
Michael can use in his catering business. The program does exactly what Michael wants
it to do: it converts cups to fluid ounces. After studying the program that we initially
wrote, however, you believe that you can improve the design. As shown in the following
pseudocode, the main module contains the code that reads the user’s input. This code
should really be treated as a separate subtask, and put in its own module. If this change
is made, the program will be like the new hierarchy chart shown in Figure 3-17.

NOTE: In an actual program you should never use variable names like x, y, and z.
This particular program is meant for demonstration purposes, however, and these
simple names are adequate.

NOTE: Normally, only variables may be passed by reference. If you attempt to
pass a non-variable argument into a reference variable parameter, an error will
result. Using the setToZero module as an example, the following statement will
generate an error:

// This is an error!
setToZero(5);

3.4 Passing Arguments to Modules 105

Module main()
// Declare a variable for the
// number of cups needed.
Declare Real cupsNeeded

// Display an intro message.
Call showIntro()

// Get the number of cups.
Display "Enter the number of cups."
Input cupsNeeded

// Convert cups to ounces.
Call cupsToOunces(cupsNeeded)

End Module

main()

showIntro() cupsToOunces
(Real cups)

getCups
(Real Ref cups)

Figure 3-17 Revised hierarchy chart

This version of the hierarchy chart shows a new module: getCups. Here is the
pseudocode for the getCups module:

Module getCups(Real Ref cups)
Display "Enter the number of cups."
Input cups

End Module

The getCups module has a parameter, cups, which is a reference variable. The mod-
ule prompts the user to enter the number of cups and then stores the user’s input in
the cups parameter. When the main module calls getCups, it will pass the local vari-
able cupsNeeded as an argument. Because it will be passed by reference, it will contain
the user’s input when the module returns. Program 3-10 shows the revised pseudocode
for the program, and Figure 3-18 shows a flowchart.

NOTE: In this case study, we improved the design of an existing program without
changing the behavior of the program. In a nutshell, we “cleaned up” the design.
Programmers call this refactoring.

⎫
⎬ This code can be put

⎭ in its own module.

106 Chapter 3 Modules

Program 3-10

1 Module main()
2 // Declare a variable for the
3 // number of cups needed.
4 Declare Real cupsNeeded
5
6 // Display an intro message.
7 Call showIntro()
8
9 // Get the number of cups.
10 Call getCups(cupsNeeded)
11
12 // Convert cups to ounces.
13 Call cupsToOunces(cupsNeeded)
14 End Module
15
16 // The showIntro module displays an
17 // introductory screen.
18 Module showIntro()
19 Display "This program converts measurements"
20 Display "in cups to fluid ounces. For your"
21 Display "reference the formula is:"
22 Display " 1 cup = 8 fluid ounces."
23 End Module
24
25 // The getCups module gets the number of cups
26 // and stores it in the reference variable cups.
27 Module getCups(Real Ref cups)
28 Display "Enter the number of cups."
29 Input cups
30 End Module
31
32 // The cupsToOunces module accepts a number
33 // of cups and displays the equivalent number
34 // of ounces.
35 Module cupsToOunces(Real cups)
36 // Declare variables.
37 Declare Real ounces
38
39 // Convert cups to ounces.
40 Set ounces = cups * 8
41
42 // Display the result.
43 Display "That converts to ",
44 ounces, " ounces."
45 End Module

Program Output (with Input Shown in Bold)

This program converts measurements
in cups to fluid ounces. For your
reference the formula is:

1 cup = 8 fluid ounces.
Enter the number of cups.
2 [Enter]
That converts to 16 ounces.

3.4 Passing Arguments to Modules 107

Checkpoint

3.14 What are the pieces of data that are passed into a module called?

3.15 What are the variables that receive pieces of data in a module called?

3.16 Does it usually matter whether an argument’s data type is different from the
data type of the parameter that it is being passed to?

3.17 Typically, what is a parameter variable’s scope?

3.18 Explain the difference between passing by value and passing by reference.

cupsToOunces
(cups)

Declare Real ounces

Set ounces =
cups * 8

Display "That converts
to ", ounces, " ounces."

Return

Return

Input cups

Display "Enter the
number of cups."

getCups
(Real Ref cups)showIntro()

Display "This program
converts measurements"

Display "in cups to fluid
ounces. For your"

Return

Display " 1 cup = 8 fluid
ounces. "

Display "reference the
formula is:"

End

main()

showIntro()

cupsToOunces
(cupsNeeded)

Declare Real
cupsNeeded

getCups
(cupsNeeded)

Figure 3-18 Flowchart for Program 3-10

108 Chapter 3 Modules

3.5 Global Variables and Global Constants

CONCEPT: A global variable is accessible to all the modules in a program.

Global Variables
A global variable is a variable that is visible to every module in the program. A global
variable’s scope is the entire program, so all of the modules in the program can access
a global variable. In most programming languages, you create a global variable by
writing its declaration statement outside of all the modules, usually at the top of the
program. Program 3-11 shows how you can declare a global variable in pseudocode.

Program 3-11

1 // The following declares a global Integer variable.
2 Declare Integer number
3
4 // The main module
5 Module main()
6 // Get a number from the user and store it
7 // in the global variable number.
8 Display "Enter a number."
9 Input number
10
11 // Call the showNumber module.
12 Call showNumber()
13 End Module
14
15 // The showNumber module displays the contents
16 // of the global variable number.
17 Module showNumber()
18 Display "The number you entered is ", number
19 End Module

Program Output (with Input Shown in Bold)

Enter a number.
22 [Enter]
The number you entered is 22

Line 2 declares an Integer variable named number. Because the declaration does not
appear inside a module, the number variable is a global variable. All of the modules
that are defined in the program have access to the variable. When the Input state-
ment in line 9 (inside the main module) executes, the value entered by the user is
stored in the global variable number. When the Display statement in line 18 (inside
the showNumber module) executes, it is the value of the same global variable that is
displayed.

3.5 Global Variables and Global Constants 109

Most programmers agree that you should restrict the use of global variables, or not use
them at all. The reasons are as follows:

● Global variables make debugging difficult. Any statement in a program can
change the value of a global variable. If you find that the wrong value is being
stored in a global variable, you have to track down every statement that accesses
it to determine where the bad value is coming from. In a program with thousands
of lines of code, this can be difficult.

● Modules that use global variables are usually dependent on those variables. If
you want to use such a module in a different program, most likely you will have
to redesign it so it does not rely on the global variable.

● Global variables make a program hard to understand. A global variable can be
modified by any statement in the program. If you are to understand any part of
the program that uses a global variable, you have to be aware of all the other
parts of the program that access the global variable.

In most cases, you should declare variables locally and pass them as arguments to the
modules that need to access them.

Global Constants
Although you should try to avoid the use of global variables, it is permissible to use
global constants in a program. A global constant is a named constant that is available
to every module in the program. Because a global constant’s value cannot be changed
during the program’s execution, you do not have to worry about many of the potential
hazards that are associated with the use of global variables.

Global constants are typically used to represent unchanging values that are needed
throughout a program. For example, suppose a banking program uses a named con-
stant to represent an interest rate. If the interest rate is used in several modules, it is eas-
ier to create a global constant, rather than a local named constant in each module. This
also simplifies maintenance. If the interest rate changes, only the declaration of the
global constant has to be changed, instead of several local declarations.

In the Spotlight:
Using Global Constants
Marilyn works for Integrated Systems, Inc., a software company that has a reputation
for providing excellent fringe benefits. One of its benefits is a quarterly bonus that is
paid to all employees. Another benefit is a retirement plan for each employee. The
company contributes 5 percent of each employee’s gross pay and bonuses to his or her
retirement plan. Marilyn wants to design a program that will calculate the company’s
contribution to an employee’s retirement account for a year. She wants the program
to show the amount of contribution for the employee’s gross pay and for the bonuses
separately.

110 Chapter 3 Modules

Here is an algorithm for the program:

1. Get the employee’s annual gross pay.
2. Get the amount of bonuses paid to the employee.
3. Calculate and display the contribution for the gross pay.
4. Calculate and display the contribution for the bonuses.

Figure 3-19 shows a hierarchy chart for the program. The pseudocode for the program
is shown in Program 3-12, and a set of flowcharts is shown in Figure 3-20.

Program 3-12

1 // Global constant for the rate of contribution.
2 Constant Real CONTRIBUTION_RATE = 0.05
3
4 // main module
5 Module main()
6 // Local variables
7 Declare Real annualGrossPay
8 Declare Real totalBonuses
9
10 // Get the annual gross pay.
11 Call getGrossPay(annualGrossPay)
12
13 // Get the total of the bonuses.
14 Call getBonuses(totalBonuses)
15
16 // Display the contribution for
17 // the gross pay.
18 Call showGrossPayContrib(annualGrossPay)
19
20 // Display the contribution for
21 // the bonuses.
22 Call showBonusContrib(totalBonuses)
23 End Module
24
25 // The getGrossPay module gets the
26 // gross pay and stores it in the
27 // grossPay reference variable.
28 Module getGrossPay(Real Ref grossPay)
29 Display "Enter the total gross pay."

main()

getGrossPay(Real
Ref grossPay)

getBonuses(Real
Ref bonuses)

showBonusContrib
(Real bonuses)

showGrossPayContrib
(Real grossPay)

Figure 3-19 Hierarchy chart

3.5 Global Variables and Global Constants 111

30 Input grossPay
31 End Module
32
33 // The getBonuses module gets the
34 // amount of bonuses and stores it
35 // in the bonuses reference variable.
36 Module getBonuses(Real Ref bonuses)
37 Display "Enter the amount of bonuses."
38 Input bonuses
39 End Module
40
41 // The showGrossPayContrib module
42 // accepts the gross pay as an argument
43 // and displays the retirement contribution
44 // for gross pay.
45 Module showGrossPayContrib(Real grossPay)
46 Declare Real contrib
47 Set contrib = grossPay * CONTRIBUTION_RATE
48 Display "The contribution for the gross pay"
49 Display "is $", contrib
50 End Module
51
52 // The showBonusContrib module accepts
53 // the bonus amount as an argument and
54 // displays the retirement contribution
55 // for bonuses.
56 Module showBonusContrib(Real bonuses)
57 Declare Real contrib
58 Set contrib = bonuses * CONTRIBUTION_RATE
59 Display "The contribution for the bonuses"
60 Display "is $", contrib
61 End Module

Program Output (with Input Shown in Bold)

Enter the total gross pay.
80000.00 [Enter]
Enter the amount of bonuses.
20000.00 [Enter]
The contribution for the gross pay
is $4000
The contribution for the bonuses
is $1000

A global constant named CONTRIBUTION_RATE is declared in line 2, and initialized
with the value 0.05. The constant is used in the calculation in line 47 (in the
showGrossPayContrib module) and again in line 58 (in the showBonusContrib
module). Marilyn decided to use this global constant to represent the 5 percent con-
tribution rate for two reasons:

● It makes the program easier to read. When you look at the calculations in lines
47 and 58, it is apparent what is happening.

● Occasionally the contribution rate changes. When this happens, it will be easy to
update the program by changing the declaration statement in line 2.

112 Chapter 3 Modules

Checkpoint

3.19 What is the scope of a global variable?

3.20 Give one good reason that you should not use global variables in a program.

3.21 What is a global constant? Is it permissible to use global constants in a program?

getBonuses
(Real Ref bonuses)

Display "Enter the
amount of bonuses."

Return

Input bonuses

Set contrib = bonuses *
CONTRIBUTION_RATE

Declare Real contrib

Display "The contribution
for the bonuses"

Return

Display "is $", contrib

Display "Enter the total
gross pay."

Return

Input grossPay

Display "The contribution
for the gross pay"

Return

Set contrib = grossPay *
CONTRIBUTION_RATE

Declare Real contrib

Display "is $", contrib

Global: Constant Real
CONTRIBUTION_RATE = 0.05

End

main()

showGrossPayContrib
(annualGrossPay)

Declare Real annualGrossPay
Declare Real totalBonuses

getBonuses
(totalBonuses)

getGrossPay
(annualGrossPay)

showBonusContrib
(totalBonuses)

getGrossPay
(Real Ref grossPay)

showGrossPay
Contrib(Real grossPay)

showBonus
Contrib(Real bonuses)

Figure 3-20 Flowchart for Program 3-12

Review Questions 113

Review Questions

Multiple Choice

1. A group of statements that exist within a program for the purpose of performing
a specific task is a(n) __________.

a. block
b. parameter
c. module
d. expression

2. A benefit of using modules that helps to reduce the duplication of code within a
program is __________.

a. code reuse
b. divide and conquer
c. debugging
d. facilitation of teamwork

3. The first line of a module definition is known as the __________.

a. body
b. introduction
c. initialization
d. header

4. You __________ the module to execute it.

a. define
b. call
c. import
d. export

5. A __________ point is the memory address of the location in the program that the
computer will return to when a module ends.

a. termination
b. module definition
c. return
d. reference

6. A design technique that programmers use to break down an algorithm into mod-
ules is known as __________.

a. top-down design
b. code simplification
c. code refactoring
d. hierarchical subtasking

7. A __________ is a diagram that gives a visual representation of the relationships
between modules in a program.

a. flowchart
b. module relationship chart
c. symbol chart
d. hierarchy chart

114 Chapter 3 Modules

8. A __________ is a variable that is declared inside a module.

a. global variable
b. local variable
c. hidden variable
d. none of the above; you cannot declare a variable inside a module

9. A(n) __________ is the part of a program in which a variable may be accessed.

a. declaration space
b. area of visibility
c. scope
d. mode

10. A(n) __________ is a piece of data that is sent into a module.

a. argument
b. parameter
c. header
d. packet

11. A(n) __________ is a special variable that receives a piece of data when a module is
called.

a. argument
b. parameter
c. header
d. packet

12. When __________, only a copy of the argument’s value is passed into the para-
meter variable.

a. passing an argument by reference
b. passing an argument by name
c. passing an argument by value
d. passing an argument by data type

13. When __________, the module can modify the argument in the calling part of the
program.

a. passing an argument by reference
b. passing an argument by name
c. passing an argument by value
d. passing an argument by data type

14. A variable that is visible to every module in the program is a __________.

a. local variable
b. universal variable
c. program-wide variable
d. global variable

15. When possible, you should avoid using __________ variables in a program.

a. local
b. global
c. reference
d. parameter

Review Questions 115

True or False

1. The phrase “divide and conquer” means that all of the programmers on a team
should be divided and work in isolation.

2. Modules make it easier for programmers to work in teams.

3. Module names should be as short as possible.

4. Calling a module and defining a module mean the same thing.

5. A flowchart shows the hierarchical relationships between modules in a program.

6. A hierarchy chart does not show the steps that are taken inside a module.

7. A statement in one module can access a local variable in another module.

8. In most programming languages, you cannot have two variables with the same
name in the same scope.

9. Programming languages typically require that arguments be of the same data type
as the parameters that they are passed to.

10. Most languages do not allow you to write modules that accept multiple arguments.

11. When an argument is passed by reference, the module can modify the argument in
the calling part of the program.

12. Passing an argument by value is a means of establishing two-way communication
between modules.

Short Answer

1. How do modules help you to reuse code in a program?

2. Name and describe the two parts that a module definition has in most languages.

3. When a module is executing, what happens when the end of the module is
reached?

4. What is a local variable? What statements are able to access a local variable?

5. In most languages, where does a local variable’s scope begin and end?

6. What is the difference between passing an argument by value and passing it by
reference?

7. Why do global variables make a program difficult to debug?

Algorithm Workbench

1. Design a module named timesTen. The module should accept an Integer argu-
ment. When the module is called, it should display the product of its argument
multiplied times 10.

2. Examine the following pseudocode module header, and then write a statement that
calls the module, passing 12 as an argument.
Module showValue(Integer quantity)

116 Chapter 3 Modules

3. Look at the following pseudocode module header:
Module myModule(Integer a, Integer b, Integer c)

Now look at the following call to myModule:
Call myModule(3, 2, 1)

When this call executes, what value will be stored in a? What value will be stored
in b? What value will be stored in c?

4. Assume that a pseudocode program contains the following module:
Module display(Integer arg1, Real arg2, String arg3)

Display "Here are the values:"
Display arg1, " ", arg2, " ", arg3

End Module

Assume that the same program has a main module with the following variable
declarations:
Declare Integer age
Declare Real income
Declare String name

Write a statement that calls the display module and passes these variables to it.

5. Design a module named getNumber, which uses a reference parameter variable
to accept an Integer argument. The module should prompt the user to enter a
number and then store the input in the reference parameter variable.

6. What will the following pseudocode program display?
Module main()

Declare Integer x = 1
Declare Real y = 3.4
Display x, " ", y
Call changeUs(x, y)
Display x, " ", y

End Module

Module changeUs(Integer a, Real b)
Set a = 0
Set b = 0
Display a, " ", b

End Module

7. What will the following pseudocode program display?
Module main()

Declare Integer x = 1
Declare Real y = 3.4
Display x, " ", y
Call changeUs(x, y)
Display x, " ", y

End Module

Module changeUs(Integer Ref a, Real Ref b)
Set a = 0
Set b = 0.0
Display a, " ", b

End Module

Programming Exercises 117

Debugging Exercises
1. Find the error in the following pseudocode.

Module main()
Declare Real mileage
Call getMileage()
Display "You’ve driven a total of ", mileage, " miles."

End Module

Module getMileage()
Display "Enter your vehicle’s mileage."
Input mileage

End Module

2. Find the error in the following pseudocode.
Module main()

Call getCalories()
End Module

Module getCalories()
Declare Real calories
Display "How many calories are in the first food?"
Input calories

Declare Real calories
Display "How many calories are in the second food?"
Input calories

End Module

3. Find the potential error in the following pseudocode.
Module main()

Call squareNumber(5)
End Module

Module squareNumber(Integer Ref number)
Set number = number^2
Display number

End Module

4. Find the error in the following pseudocode.
Module main()

Call raiseToPower(2, 1.5)
End Module

Module raiseToPower(Real value, Integer power)
Declare Real result
Set result = value^power
Display result

End Module

Programming Exercises
1. Kilometer Converter

Design a modular program that asks the user to enter a distance in kilometers, and
then converts that distance to miles. The conversion formula is as follows:

Miles = Kilometers × 0.6214

Kilometer Converter

VideoNote

118 Chapter 3 Modules

2. Sales Tax Program Refactoring

Programming Exercise 6 in Chapter 2 was the Sales Tax program. For that exercise
you were asked to design a program that calculates and displays the county and
state sales tax on a purchase. If you have already designed that program, refactor
it so the subtasks are in modules. If you have not already designed that program,
create a modular design for it.

3. How Much Insurance?

Many financial experts advise that property owners should insure their homes or
buildings for at least 80 percent of the amount it would cost to replace the struc-
ture. Design a modular program that asks the user to enter the replacement cost of
a building and then displays the minimum amount of insurance he or she should
buy for the property.

4. Automobile Costs

Design a modular program that asks the user to enter the monthly costs for the fol-
lowing expenses incurred from operating his or her automobile: loan payment, in-
surance, gas, oil, tires, and maintenance. The program should then display the
total monthly cost of these expenses, and the total annual cost of these expenses.

5. Property Tax

A county collects property taxes on the assessment value of property, which is
60 percent of the property’s actual value. For example, if an acre of land is valued
at $10,000, its assessment value is $6,000. The property tax is then 64¢ for each
$100 of the assessment value. The tax for the acre assessed at $6,000 will be
$38.40. Design a modular program that asks for the actual value of a piece of
property and displays the assessment value and property tax.

6. Body Mass Index

Design a modular program that calculates and displays a person’s body mass index
(BMI). The BMI is often used to determine whether a person with a sedentary
lifestyle is overweight or underweight for his or her height. A person’s BMI is cal-
culated with the following formula:

BMI = Weight × 703/Height2

7. Calories from Fat and Carbohydrates

A nutritionist who works for a fitness club helps members by evaluating their diets.
As part of her evaluation, she asks members for the number of fat grams and car-
bohydrate grams that they consumed in a day. Then, she calculates the number of
calories that result from the fat, using the following formula:

Calories from Fat = Fat Grams × 9

Next, she calculates the number of calories that result from the carbohydrates,
using the following formula:

Calories from Carbs = Carb Grams × 4

The nutritionist asks you to design a modular program that will make these
calculations.

8. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats
cost $15, Class B seats cost $12, and Class C seats cost $9. Design a modular pro-
gram that asks how many tickets for each class of seats were sold, and then dis-
plays the amount of income generated from ticket sales.

9. Paint Job Estimator

A painting company has determined that for every 115 square feet of wall space,
one gallon of paint and eight hours of labor will be required. The company charges
$20.00 per hour for labor. Design a modular program that asks the user to enter
the square feet of wall space to be painted and the price of the paint per gallon. The
program should display the following data:
● The number of gallons of paint required
● The hours of labor required
● The cost of the paint
● The labor charges
● The total cost of the paint job

10. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the total sales for the
month, and the amount of state and county sales tax collected. The state sales tax
rate is 4 percent and the county sales tax rate is 2 percent. Design a modular pro-
gram that asks the user to enter the total sales for the month. From this figure, the
application should calculate and display the following:
● The amount of county sales tax
● The amount of state sales tax
● The total sales tax (county plus state)

In the pseudocode, represent the county tax rate (0.02) and the state tax rate (0.04)
as named constants.

Programming Exercises 119

This page intentionally left blank

TOPICS

4.1 Introduction to Decision Structures

4.2 Dual Alternative Decision Structures

4.3 Comparing Strings

4.4 Nested Decision Structures

4.5 The Case Structure

4.6 Logical Operators

4.7 Boolean Variables

Decision Structures and
Boolean Logic

4.1 Introduction to Decision Structures

CONCEPT: A decision structure allows a program to perform actions only under
certain conditions.

A control structure is a logical design that controls the order in which a set of state-
ments executes. So far in this book we have used only the simplest type of control
structure: the sequence structure. Recall from Chapter 2 that a sequence structure is a
set of statements that execute in the order that they appear. For example, the following
pseudocode is a sequence structure because the statements execute from top to bottom.

Declare Integer age
Display "What is your age?"
Input age
Display "Here is the value that you entered:"
Display age

Even in Chapter 3, where you learned about modules, each module was written as a
sequence structure. For example, the following module is a sequence structure because
the statements in it execute in the order that they appear, from the beginning of the
module to the end.

C
H

A
P

T
E

R

4

121

The Single
Alternative
Decision
Structure

VideoNote

122 Chapter 4 Decision Structures and Boolean Logic

Module doubleNumber(Integer value)
Declare Integer result
Set result = value * 2
Display result

End Module

Although the sequence structure is heavily used in programming, it cannot handle
every type of task. Some problems simply cannot be solved by performing a set of
ordered steps, one after the other. For example, consider a pay calculating program
that determines whether an employee has worked overtime. If the employee has
worked more than 40 hours, he or she gets paid extra for all the hours over 40. Oth-
erwise, the overtime calculation should be skipped. Programs like this require a dif-
ferent type of control structure: one that can execute a set of statements only under
certain circumstances. This can be accomplished with a decision structure. (Decision
structures are also known as selection structures.)

In a decision structure’s simplest form, a specific action is performed only if a certain
condition exists. If the condition does not exist, the action is not performed. The
flowchart shown in Figure 4-1 shows how the logic of an everyday decision can be
diagrammed as a decision structure. The diamond symbol represents a true/false con-
dition. If the condition is true, we follow one path, which leads to an action being
performed. If the condition is false, we follow another path, which skips the action.

Figure 4-1 A simple decision structure for an everyday task

Wear a coat.

Cold
outside

True

False

In the flowchart, the diamond symbol indicates some condition that must be tested.
In this case, we are determining whether the condition Cold outside is true or false.
If this condition is true, the action Wear a coat is performed. If the condition is false,
the action is skipped. The action is conditionally executed because it is performed
only when a certain condition is true.

Programmers call the type of decision structure shown in Figure 4-1 a single alterna-
tive decision structure. This is because it provides only one alternative path of execu-
tion. If the condition in the diamond symbol is true, we take the alternative path.
Otherwise, we exit the structure.

4.1 Introduction to Decision Structures 123

Combining Structures
You cannot use decision structures alone to create a complete program. You use a deci-
sion structure to handle any part of a program that needs to test a condition and con-
ditionally execute an action depending on the outcome of the condition. For other
parts of a program you need to use other structures. For example, Figure 4-2 shows a
complete flowchart that combines a decision structure with two sequence structures.
(Figure 4-2 is not a flowchart of a computer algorithm, but of a human action.)

The flowchart in the figure starts with a sequence structure. Assuming you have an
outdoor thermometer in your window, the first step is Go to the window, and the
next step is Read thermometer. A decision structure appears next, testing the condi-
tion Cold outside. If this is true, the action Wear a coat is performed. Another
sequence structure appears next. The step Open the door is performed, followed by
Go outside.

Quite often, structures must be nested inside of other structures. For example, look at
the partial flowchart in Figure 4-3. It shows a decision structure with a sequence
structure nested inside it. (Once again, this is a flowchart showing human actions, not
program statements.) The decision structure tests the condition Cold outside. If that
condition is true, the steps in the sequence structure are executed.

Wear a coat.

True

False

Start

End

Sequence structure

Sequence structure

Decision structure

Go to the
window.

Read
thermometer.

Cold
outside

Open the door.

Go outside.

Figure 4-2 Combining sequence structures with a decision structure

124 Chapter 4 Decision Structures and Boolean Logic

True

False

Sequence
structure

Decision
structure

Cold
outside

Wear a coat.

Wear a hat.

Wear gloves.

Figure 4-3 A sequence structure nested inside a decision structure

Writing a Decision Structure in Pseudocode
In pseudocode we use the If-Then statement to write a single alternative decision
structure. Here is the general format of the If-Then statement:

If condition Then
statement
statement These statements are conditionally executed.
etc.

End If

For simplicity, we will refer to the line that begins with the word If as the If clause,
and we will refer to the line that reads End If as the End If clause. In the general for-
mat, the condition is any expression that can be evaluated as either true or false. When
the If-Then statement executes, the condition is tested. If it is true, the statements that
appear between the If clause and the End If clause are executed. The End If clause
marks the end of the If-Then statement.

Boolean Expressions and Relational Operators

All programming languages allow you to create expressions that can be evaluated as
either true or false. These are called Boolean expressions, named in honor of the
English mathematician George Boole. In the 1800s Boole invented a system of math-
ematics in which the abstract concepts of true and false can be used in computations.
The condition that is tested by an If-Then statement must be a Boolean expression.

Typically, the Boolean expression that is tested by an If-Then statement is formed
with a relational operator. A relational operator determines whether a specific rela-

⎫
⎬
⎭

4.1 Introduction to Decision Structures 125

Table 4-1 Relational operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

tionship exists between two values. For example, the greater than operator (>) deter-
mines whether one value is greater than another. The equal to operator (==) deter-
mines whether two values are equal. Table 4-1 lists the relational operators that are
commonly available in most programming languages.

The following is an example of an expression that uses the greater than (>) operator to
compare two variables, length and width:

length > width

This expression determines whether the value of length is greater than the value of
width. If length is greater than width, the value of the expression is true. Other-
wise, the value of the expression is false. Because the expression can be only true or
false, it is a Boolean expression. The following expression uses the less than operator to
determine whether length is less than width:

length < width

Table 4-2 shows examples of several Boolean expressions that compare the variables
x and y.

Table 4-2 Boolean expressions using relational operators

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater than or equal to y?

x <= y Is x less than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

The >= and <= Operators

Two of the operators, >= and <=, test for more than one relationship. The >= oper-
ator determines whether the operand on its left is greater than or equal to the operand
on its right. For example, assuming that a is 4, b is 6, and c is 4, both of the expres-
sions b >= a and a >= c are true, and the expression a >= 5 is false.

126 Chapter 4 Decision Structures and Boolean Logic

The <= operator determines whether the operand on its left is less than or equal to
the operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both
a <= c and b <= 10 are true, but b <= a is false.

The == Operator

The == operator determines whether the operand on its left is equal to the operand on
its right. If both operands have the same value, the expression is true. Assuming
that a is 4, the expression a == 4 is true and the expression a == 2 is false.

In this book, we use two = characters as the equal to operator to avoid confusion with
the assignment operator, which is one = character. Several programming languages,
most notably Java, Python, C, and C++, also follow this practice.

WARNING! When programming in a language that uses == as the equal to oper-
ator, take care not to confuse this operator with the assignment operator, which is
one = sign. In languages such as Java, Python, C, and C++ the == operator deter-
mines whether a variable is equal to another value, but the = operator assigns the
value to a variable.

The != Operator

The != operator is the not equal to operator. It determines whether the operand on
its left is not equal to the operand on its right, which is the opposite of the == oper-
ator. As before, assuming a is 4, b is 6, and c is 4, both a != b and b != c are true
because a is not equal to b and b is not equal to c. However, a != c is false because
a is equal to c.

Note that != is the same character sequence used by several languages for the not
equal to operator, including Java, C, and C++. Some languages, such as Visual Basic,
use <> as the not equal to operator.

Putting It All Together
Let’s look at the following example of the If-Then statement in pseudocode:

If sales > 50000 Then
Set bonus = 500.0

End If

This statement uses the > operator to determine whether sales is greater than
50,000. If the expression sales > 50000 is true, the variable bonus is assigned 500.0.
If the expression is false, however, the assignment statement is skipped. Figure 4-4
shows a flowchart for this section of code.

The following example conditionally executes a set of statements. Figure 4-5 shows a
flowchart for this section of code.

If sales > 50000 Then
Set bonus = 500.0
Set commissionRate = 0.12
Display "You've met your sales quota!"

End If

4.1 Introduction to Decision Structures 127

Figure 4-4 Example decision structure

Set bonus = 500.0

sales > 50000
True

False

Set commissionRate
= 0.12

Display "You've met
your sales quota!"

Figure 4-5 Example decision structure

The following pseudocode uses the == operator to determine whether two values are
equal. The expression balance == 0 will be true if the balance variable is set to 0.
Otherwise the expression will be false.

Set bonus = 500.0

sales > 50000
True

False

128 Chapter 4 Decision Structures and Boolean Logic

If sales > 50000 Then
 Set bonus = 500.0
 Set commissionRate = 0.12
 Display "You've met your sales quota!"

End If

Indent the
conditionally
executed
statements.

Align the If
and End If

clauses.

Figure 4-6 Programming style with an If-Then statement

If balance == 0 Then
// Statements appearing here will
// be executed only if balance is
// equal to 0.

End If

The following pseudocode uses the != operator to determine whether two values are
not equal. The expression choice != 5 will be true if the choice variable is not set
to 5. Otherwise the expression will be false.

If choice != 5 Then
// Statements appearing here will
// be executed only if choice is
// not equal to 5.

End If

Programming Style and the If-Then Statement
As shown in Figure 4-6, you should use the following conventions when you write an
If-Then statement:

● Make sure the If clause and the End If clause are aligned.
● Indent the conditionally executed statements that appear between the If clause

and the End If clause.

By indenting the conditionally executed statements you visually set them apart from
the surrounding code. This makes your program easier to read and debug. Most pro-
grammers use this style of writing If-Then statements in both pseudocode and actual
code.

In the Spotlight:
Using the If-Then Statement
Kathryn teaches a science class and her students are required to take three tests. She
wants to write a program that her students can use to calculate their average test score.
She also wants the program to congratulate the student enthusiastically if the average
is greater than 95. Here is the algorithm:

1. Get the first test score.
2. Get the second test score.
3. Get the third test score.
4. Calculate the average.
5. Display the average.
6. If the average is greater than 95, congratulate the user.

4.1 Introduction to Decision Structures 129

Program 4-1 shows the pseudocode, and Figure 4-7 shows a flowchart for the
program.

Program 4-1

1 // Declare variables
2 Declare Real test1, test2, test3, average
3
4 // Get test 1
5 Display "Enter the score for test #1."
6 Input test1
7
8 // Get test 2
9 Display "Enter the score for test #2."
10 Input test2
11
12 // Get test 3
13 Display "Enter the score for test #3."
14 Input test3
15
16 // Calculate the average score.
17 Set average = (test1 + test2 + test3) / 3
18
19 // Display the average.
20 Display "The average is ", average
21
22 // If the average is greater than 95
23 // congratulate the user.
24 If average > 95 Then
25 Display "Congratulations! Great average!"
26 End If

Program Output (with Input Shown in Bold)

Enter the score for test #1.
82 [Enter]
Enter the score for test #2.
76 [Enter]
Enter the score for test #3.
91 [Enter]
The average is 83

Program Output (with Input Shown in Bold)

Enter the score for test #1.
93 [Enter]
Enter the score for test #2.
99 [Enter]
Enter the score for test #3.
96 [Enter]
The average is 96
Congratulations! Great average!

Checkpoint

4.1 What is a control structure?

4.2 What is a decision structure?

4.3 What is a single alternative decision structure?

4.4 What is a Boolean expression?

4.5 What types of relationships between values can you test with relational
operators?

4.6 Write a pseudocode If-Then statement that assigns 0 to x if y is equal to 20.

4.7 Write a pseudocode If-Then statement that assigns 0.2 to commission if
sales is greater than or equal to 10,000.

130 Chapter 4 Decision Structures and Boolean Logic

End

Input test3

Set average = (test1 +
test2 + test3) / 3

Display "The average
is ", average

average > 95

Display "Congratulations!
Great average!"

A
Start

Declare Real test1,
test2, test3, average

Display "Enter the
score for test #1."

Input test1

Display "Enter the
score for test #2."

Input test2

Display "Enter the
score for test #3."

A

True

False

Figure 4-7 Flowchart for Program 4-1

4.2 Dual Alternative Decision Structures 131

4.2 Dual Alternative Decision Structures

CONCEPT: A dual alternative decision structure will execute one group of state-
ments if its Boolean expression is true, or another group if its Boolean
expression is false.

A dual alternative decision structure has two possible paths of execution—one path is
taken if a condition is true, and the other path is taken if the condition is false. Figure 4-8
shows a flowchart for a dual alternative decision structure.

temperature
< 40

Display "Nice weather
we're having."

Display "A little cold,
isn't it?"

TrueFalse

Figure 4-8 A dual alternative decision structure

The decision structure in the flowchart tests the condition temperature < 40. If this
condition is true, the statement Display "A little cold, isn't it?" is performed. If
the condition is false, the statement Display "Nice weather we're having." is
performed.

In pseudocode we write a dual alternative decision structure as an If-Then-Else
statement. Here is the general format of the If-Then-Else statement:

If condition Then
statement
statement
etc.

Else
statement
statement
etc.

End If

In the general format, the condition is any Boolean expression. If the expression is true,
the statements that appear next are executed, up to the line that reads Else. If the ex-
pression is false, the statements that appear between Else and End If are executed.
The line that reads End If marks the end of the If-Then-Else statement.

⎫
⎬ These statements are executed if the condition is true.

⎭

⎫
⎬ These statements are executed if the condition is false.

⎭

The Dual
Alternative
Decision
Structure

VideoNote

132 Chapter 4 Decision Structures and Boolean Logic

The following pseudocode shows an example of an If-Then-Else statement. This
pseudocode matches the flowchart that was shown in Figure 4-8.

If temperature < 40 Then
Display "A little cold, isn't it?"

Else
Display "Nice weather we're having."

End If

We will refer to the line that reads Else as the Else clause. When you write an If-
Then-Else statement, use the following style conventions:

● Make sure the If clause, the Else clause, and the End If clause are aligned.
● Indent the conditionally executed statements that appear between the If clause

and the Else clause, and between the Else clause and the End If clause.

This is shown in Figure 4-9.

If temperature < 40 Then
 Display "A little cold, isn't it?"
Else
 Display "Nice weather we're having."
End If

Indent the
conditionally
executed
statements.

Align the If,
Else, and End
If clauses.

Figure 4-9 Programming style with an If-Then-Else statement

In the Spotlight:
Using the If-Then-Else Statement
Chris owns an auto repair business and has several employees. If an employee works
over 40 hours in a week, Chris pays that employee 1.5 times his or her regular hourly
pay rate for all hours over 40. Chris has asked you to design a simple payroll program
that calculates an employee’s gross pay, including any overtime wages. You design the
following algorithm:

1. Get the number of hours worked.
2. Get the hourly pay rate.
3. If the employee worked more than 40 hours, calculate the gross pay with over-

time. Otherwise, calculate the gross pay as usual.
4. Display the gross pay.

You go through the top-down design process and create the hierarchy chart shown in
Figure 4-10. As shown in the hierarchy chart, the main module will call four other
modules. The following are summaries of those modules:

● getHoursWorked—This module will ask the user to enter the number of hours
worked.

● getPayRate—This module will ask the user to enter the hourly pay rate.
● calcPayWithOT—This module will calculate an employee’s pay with overtime.
● calcRegularPay—This module will calculate the gross pay for an employee

with no overtime.

4.2 Dual Alternative Decision Structures 133

The main module, which executes when the program is run, will call these modules
and then display the gross pay. The pseudocode for the program is shown in Program 4-2.
Figures 4-11 and 4-12 show flowcharts for each of the modules.

Program 4-2

1 // Global constants
2 Constant Integer BASE_HOURS = 40
3 Constant Real OT_MULTIPLIER = 1.5
4
5 Module main()
6 // Local variables
7 Declare Real hoursWorked, payRate, grossPay
8
9 // Get the number of hours worked.
10 Call getHoursWorked(hoursWorked)
11
12 // Get the hourly pay rate.
13 Call getPayRate(payRate)
14
15 // Calculate the gross pay.
16 If hoursWorked > BASE_HOURS Then
17 Call calcPayWithOT(hoursWorked, payRate,
18 grossPay)
19 Else
20 Call calcRegularPay(hoursWorked, payRate,
21 grossPay)
22 End If
23
24 // Display the gross pay.
25 Display "The gross pay is $", grossPay
26 End Module
27
28 // The getHoursWorked module gets the number
29 // of hours worked and stores it in the

main()

calcPayWithOT
(Real hours, Real rate,

Real Ref gross)

calcRegularPay
(Real hours, Real rate,

Real Ref gross)

getHoursWorked
(Real Ref hours)

getPayRate
(RealRef Rate)

Figure 4-10 Hierarchy chart

134 Chapter 4 Decision Structures and Boolean Logic

30 // hours parameter.
31 Module getHoursWorked(Real Ref hours)
32 Display "Enter the number of hours worked."
33 Input hours
34 End Module
35
36 // The getPayRate module gets the hourly
37 // pay rate and stores it in the rate
38 // parameter.
39 Module getPayRate(Real Ref rate)
40 Display "Enter the hourly pay rate."
41 Input rate
42 End Module
43
44 // The calcPayWithOT module calculates pay
45 // with overtime. The gross pay is stored
46 // in the gross parameter.
47 Module calcPayWithOT(Real hours, Real rate,
48 Real Ref gross)
49 // Local variables
50 Declare Real overtimeHours, overtimePay
51
52 // Calculate the number of overtime hours.
53 Set overtimeHours = hours - BASE_HOURS
54
55 // Calculate the overtime pay
56 Set overtimePay = overtimeHours * rate *
57 OT_MULTIPLIER
58
59 // Calculate the gross pay.
60 Set gross = BASE_HOURS * rate + overtimePay
61 End Module
62
63 // The calcRegularPay module calculates
64 // pay with no overtime and stores it in
65 // the gross parameter.
66 Module calcRegularPay(Real hours, Real rate,
67 Real Ref gross)
68 Set gross = hours * rate
69 End Module

Program Output (with Input Shown in Bold)

Enter the number of hours worked.
40 [Enter]
Enter the hourly pay rate.
20 [Enter]
The gross pay is $800

Program Output (with Input Shown in Bold)

Enter the number of hours worked.
50 [Enter]
Enter the hourly pay rate.
20 [Enter]
The gross pay is $1100

4.2 Dual Alternative Decision Structures 135

Notice that two global constants are declared in lines 2 and 3. The BASE_HOURS con-
stant is set to 40, which is the number of hours an employee can work in a week with-
out getting paid overtime. The OT_MULTIPLIER constant is set to 1.5, which is the pay
rate multiplier for overtime hours. This means that the employee’s hourly pay rate is
multiplied by 1.5 for all overtime hours.

End

main()

getHoursWorked
(hoursWorked)

Declare Real
hoursWorked, payRate,

grossPay

getPayRate
(payRate)

hoursWorked >
BASE_HOURS

TrueFalse

calcPayWithOT
(hoursWorked,

payRate, grossPay)

calcRegularPay
(hoursWorked,

payRate, grossPay)

Display "The gross
pay is $", grossPay

Global: Constant Integer
BASE_HOURS = 40

Figure 4-11 Flowchart for the main module

136 Chapter 4 Decision Structures and Boolean Logic

Return

getHoursWorked
(Real Ref hours)

Display "Enter the
number of hours worked."

Input hours

Return

getPayRate
(Real Ref rate)

Display "Enter the
hourly pay rate."

Input rate

Declare Real
overtimeHours,

overtimePay

Return

calcPayWithOT
(Real hours, Real

rate, Real Ref
gross)

Set overtimeHours =
hours – BASE_HOURS

Set overtimePay =
overtimeHours *

rate * OT_MULTIPLIER

Set gross =
BASE_HOURS * rate +

overtimePay

Return

calcRegularPay
(Real hours, Real

rate, Real Ref
gross)

Set gross = hours * rate

Global:
Constant Integer BASE_HOURS = 40
Constant Real OT_MULTIPLIER = 1.5

Figure 4-12 Flowcharts for the other modules

Checkpoint

4.8 How does a dual alternative decision structure work?

4.9 What statement do you use in pseudocode to write a dual alternative decision
structure?

4.10 When you write an If-Then-Else statement, under what circumstances do
the statements that appear between Else and End If execute?

4.3 Comparing Strings 137

4.3 Comparing Strings

CONCEPT: Most programming languages allow you to compare strings. This
allows you to create decision structures that test the value of a string.

You saw in the preceding examples how numbers can be compared. Most program-
ming languages also allow you to compare strings. For example, look at the following
pseudocode:

Declare String name1 = "Mary"
Declare String name2 = "Mark"
If name1 == name2 Then

Display "The names are the same"
Else

Display "The names are NOT the same"
End If

The == operator tests name1 and name2 to determine whether they are equal. Because
the strings "Mary" and "Mark" are not equal, the Else clause will display the message
“The names are NOT the same.”

You can compare String variables with string literals as well. Assume month is a
String variable. The following pseudocode sample uses the != operator to determine
whether month is not equal to "October."

If month != "October" Then
statement

End If

The pseudocode in Program 4-3 demonstrates how two strings can be compared. The
program prompts the user to enter a password and then determines whether the string
entered is equal to "prospero."

Program 4-3

1 // A variable to hold a password.
2 Declare String password
3
4 // Prompt the user to enter the password.
5 Display "Enter the password."
6 Input password
7
8 // Determine whether the correct password
9 // was entered.
10 If password == "prospero" Then
11 Display "Password accepted."
12 Else
13 Display "Sorry, that is not the correct password."
14 End If

138 Chapter 4 Decision Structures and Boolean Logic

Program Output (with Input Shown in Bold)

Enter the password.
ferdinand [Enter]
Sorry, that is not the correct password.

Program Output (with Input Shown in Bold)

Enter the password.
prospero [Enter]
Password accepted.

Other String Comparisons
In addition to determining whether strings are equal or not equal, many languages
allow you to determine whether one string is greater than or less than another string.
This is a useful capability because programmers commonly need to design programs
that sort strings in some order.

Recall from Chapter 1 that computers do not actually store characters, such as A, B, C,
and so on, in memory. Instead, they store numeric codes that represent the characters.
We mentioned in Chapter 1 that ASCII (the American Standard Code for Information
Interchange) is the most commonly used character coding system. You can see the set
of ASCII codes in Appendix A on the student CD, but here are some facts about it:

● The uppercase characters “A” through “Z” are represented by the numbers 65
through 90.

● The lowercase characters “a” through “z” are represented by the numbers 97
through 122.

● When the digits “0” through “9” are stored in memory as characters, they are
represented by the numbers 48 through 57. (For example, the string "abc123"
would be stored in memory as the codes 97, 98, 99, 49, 50, and 51.)

● A blank space is represented by the number 32.

In addition to establishing a set of numeric codes to represent characters in memory,
ASCII also establishes an order for characters. The character “A” comes before the
character “B,” which comes before the character “C,” and so on.

When a program compares characters, it actually compares the codes for the charac-
ters. For example, look at the following pseudocode:

If "a" < "b" Then
Display "The letter a is less than the letter b."

End If

NOTE: In most languages, string comparisons are case sensitive. For example, the
strings "saturday" and "Saturday" are not equal because the “s” is lowercase in
the first string, but uppercase in the second string.

4.3 Comparing Strings 139

This If statement determines whether the ASCII code for the character “a” is less than
the ASCII code for the character “b.” The expression "a" < "b" is true because the
code for “a” is less than the code for “b.” So, if this were part of an actual program it
would display the message “The letter a is less than the letter b.”

Let’s look at how strings containing more than one character are typically compared.
Suppose we have the strings "Mary" and "Mark" stored in memory, as follows:

Declare String name1 = "Mary"
Declare String name2 = "Mark"

Figure 4-13 shows how the strings "Mary" and "Mark" would actually be stored in
memory, using ASCII codes.

M a r y

77 97 114 121 77 97 114 107

M a r k

Figure 4-13 Character codes for the strings “Mary” and “Mark”

77 97 114 121

77 97 114 107

M a r k

M a r y

Figure 4-14 Comparing each character in a string

When you use relational operators to compare these strings, they are compared character-
by-character. For example, look at the following pseudocode:

Declare String name1 = "Mary"
Declare String name2 = "Mark"
If name1 > name2 Then

Display "Mary is greater than Mark"
Else

Display "Mary is not greater than Mark"
End If

The > operator compares each character in the strings "Mary" and "Mark," beginning
with the first, or leftmost, characters. This is shown in Figure 4-14.

Here is how the comparison typically takes place:

1. The “M” in “Mary” is compared with the “M” in “Mark.” Because these are the
same, the next characters are compared.

2. The “a” in “Mary” is compared with the “a” in “Mark.” Because these are the
same, the next characters are compared.

140 Chapter 4 Decision Structures and Boolean Logic

3. The “r” in “Mary” is compared with the “r” in “Mark.” Because these are the
same, the next characters are compared.

4. The “y” in “Mary” is compared with the “k” in “Mark.” Because these are not
the same, the two strings are not equal. The character “y” has a higher ASCII
code (121) than “k” (107), so it is determined that the string "Mary" is greater
than the string "Mark."

If one of the strings in a comparison is shorter than the other, many languages compare
only the corresponding characters. If the corresponding characters are identical, then
the shorter string is considered less than the longer string. For example, suppose the
strings "High" and "Hi" were being compared. The string "Hi" would be considered
less than "High" because it is shorter.

The pseudocode in Program 4-4 shows a simple demonstration of how two strings
can be compared with the < operator. The user is prompted to enter two names and
the program displays those two names in alphabetical order.

Program 4-4

1 // Declare variables to hold two names.
2 Declare String name1
3 Declare String name2
4
5 // Prompt the user for two names.
6 Display "Enter a name (last name first)."
7 Input name1
8 Display "Enter another name (last name first)."
9 Input name2
10
11 // Display the names in alphabetical order.
12 Display "Here are the names, listed alphabetically:"
13 If name1 < name2 Then
14 Display name1
15 Display name2
16 Else
17 Display name2
18 Display name1
19 End If

Program Output (with Input Shown in Bold)

Enter a name (last name first).
Jones, Richard [Enter]
Enter another name (last name first).
Costa, Joan [Enter]
Here are the names, listed alphabetically:
Costa, Joan
Jones, Richard

Checkpoint

4.11 If the following pseudocode were an actual program, what would it display?

If "z" < "a" Then
Display "z is less than a."

Else
Display "z is not less than a."

End If

4.12 If the following pseudocode were an actual program, what would it display?

Declare String s1 = "New York"
Declare String s2 = "Boston"
If s1 > s2 Then

Display s2
Display s1

Else
Display s1
Display s2

End If

4.4 Nested Decision Structures

CONCEPT: To test more than one condition, a decision structure can be nested
inside another decision structure.

In Section 4.1, we mentioned that programs are usually designed as combinations of
different control structures. In that section you saw an example of a sequence struc-
ture nested inside a decision structure (see Figure 4-3). You can also nest decision
structures inside of other decision structures. In fact, this is a common requirement
in programs that need to test more than one condition.

For example, consider a program that determines whether a bank customer qualifies
for a loan. To qualify, two conditions must exist: (1) the customer must earn at least
$30,000 per year, and (2) the customer must have been employed at his or her cur-
rent job for at least two years. Figure 4-15 shows a flowchart for an algorithm that
could be used in such a program. Assume that the salary variable contains the cus-
tomer’s annual salary, and the yearsOnJob variable contains the number of years
that the customer has worked on his or her current job.

If we follow the flow of execution, we see that the condition salary >= 30000 is
tested. If this condition is false, there is no need to perform further tests; we know
that the customer does not qualify for the loan. If the condition is true, however, we
need to test the second condition. This is done with a nested decision structure that
tests the condition yearsOnJob >= 2. If this condition is true, then the customer
qualifies for the loan. If this condition is false, then the customer does not qualify.
Program 4-5 shows the pseudocode for the complete program.

4.4 Nested Decision Structures 141

142 Chapter 4 Decision Structures and Boolean Logic

Program 4-5

1 // Declare variables
2 Declare Real salary, yearsOnJob
3
4 // Get the annual salary.
5 Display "Enter your annual salary."
6 Input salary
7
8 // Get the number of years on the current job.
9 Display "Enter the number of years on your"
10 Display "current job."
11 Input yearsOnJob
12
13 // Determine whether the user qualifies.
14 If salary >= 30000 Then
15 If yearsOnJob >= 2 Then
16 Display "You qualify for the loan."
17 Else
18 Display "You must have been on your current"
19 Display "job for at least two years to qualify."
20 End If
21 Else
22 Display "You must earn at least $30,000"
23 Display "per year to qualify."
24 End If

salary >= 30000
TrueFalse

End

Display "You must earn
at least $30,000"

Display "per year to
qualify."

yearsOnJob >= 2
TrueFalse

Display "You must have
been on your current"

Display "job for at least
two years to qualify."

Display "You qualify for
the loan."

Figure 4-15 A nested decision structure

4.4 Nested Decision Structures 143

Program Output (with Input Shown in Bold)

Enter your annual salary.
35000 [Enter]
Enter the number of years on your
current job.
1 [Enter]
You must have been on your current
job for at least two years to qualify.

Program Output (with Input Shown in Bold)

Enter your annual salary.
25000 [Enter]
Enter the number of years on your
current job.
5 [Enter]
You must earn at least $30,000
per year to qualify.

Program Output (with Input Shown in Bold)

Enter your annual salary.
35000 [Enter]
Enter the number of years on your
current job.
5 [Enter]
You qualify for the loan.

Look at the If-Then-Else statement that begins in line 14. It tests the condition
salary >= 30000. If this condition is true, the If-Then-Else statement that begins
in line 15 is executed. Otherwise the program jumps to the Else clause in line 21 and
executes the two Display statements in lines 22 and 23. The program then leaves the
decision structure and the program ends.

Programming Style and
Nested Decision Structures
For debugging purposes, it’s important to use proper alignment and indentation in a
nested decision structure. This makes it easier to see which actions are performed by
each part of the structure. For example, in most languages the following pseudocode is
functionally equivalent to lines 14 through 24 in Program 4-5. Although this
pseudocode is logically correct, it would be very difficult to debug because it is not
properly indented.

If salary >= 30000 Then
If yearsOnJob >= 2 Then
Display "You qualify for the loan."
Else
Display "You must have been on your current"
Display "job for at least two years to qualify."
End If

Don’t write
pseudocode
like this!

144 Chapter 4 Decision Structures and Boolean Logic

Else
Display "You must earn at least $30,000"
Display "per year to qualify.
End If

Proper indentation and alignment also makes it easier to see which If, Else, and End
If clauses belong together, as shown in Figure 4-16.

If salary >= 30000 Then
 If yearsOnJob >= 2
 Display "You qualify for the loan."
 Else
 Display "You must have been on your current"
 Display "job for at least two years to qualify."
 End If
Else
 Display "You must earn at least $30,000"
 Display "per year to qualify.
End If

This If,Else,
and End If
go together.

This If, Else,
and End If
go together.

Figure 4-16 Alignment of If, Else, and End If clauses

Testing a Series of Conditions
In the previous example you saw how a program can use nested decision structures
to test more than one condition. It is not uncommon for a program to have a series
of conditions to test, and then perform an action depending on which condition is
true. One way to accomplish this is to have a decision structure with numerous other
decision structures nested inside it. For example, consider the program presented in
the following In the Spotlight section.

In the Spotlight:
Multiple Nested Decision Structures
Dr. Suarez teaches a literature class and uses the following 10 point grading scale for all
of his exams:

Test Score Grade
90 and above A
80–89 B
70–79 C
60–69 D
Below 60 F

He has asked you to write a program that will allow a student to enter a test score and
then display the grade for that score. Here is the algorithm that you will use:

1. Ask the user to enter a test score.
2. Determine the grade in the following manner:

4.4 Nested Decision Structures 145

If the score is less than 60, then the grade is “F.”
Otherwise, if the score is less than 70, then the grade is “D.”

Otherwise, if the score is less than 80, then the grade is “C.”
Otherwise, if the score is less than 90, then the grade is “B.”

Otherwise, the grade is “A.”

You decide that the process of determining the grade will require several nested deci-
sion structures, as shown in Figure 4-17. Program 4-6 shows the pseudocode for the
complete program. The code for the nested decision structures is in lines 9 through 25.

Program 4-6

1 // Variable to hold the test score
2 Declare Real score
3
4 // Get the test score.
5 Display "Enter your test score."
6 Input score
7
8 // Determine the grade.
9 If score < 60 Then
10 Display "Your grade is F."
11 Else
12 If score < 70 Then
13 Display "Your grade is D."
14 Else
15 If score < 80 Then

TrueFalse
score
< 60

TrueFalse
score
< 70

TrueFalse
score
< 80

TrueFalse
score
< 90

Display "Your
grade is A."

Display "Your
grade is B."

Display "Your
grade is C."

Display "Your
grade is D."

Display "Your
grade is F."

Figure 4-17 Nested decision structure to determine a grade

146 Chapter 4 Decision Structures and Boolean Logic

The If-Then-Else If Statement
Even though Program 4-6 is a simple example, the logic of the nested decision struc-
ture is fairly complex. Most languages provide a special version of the decision struc-
ture known as the If-Then-Else If statement, which makes this type of logic simpler
to write. In pseudocode we will write the If-Then-Else If statement using the fol-
lowing general format:

If condition_1 Then
statement
statement
etc.

Else If condition_2 Then
statement
statement
etc.

Insert as many Else If clauses as necessary

Else
statement
statement
etc.

End If

When the statement executes, condition_1 is tested. If condition_1 is true, the state-
ments that immediately follow are executed, up to the Else If clause. The rest of the
structure is ignored. If condition_1 is false, however, the program jumps to the very
next Else If clause and tests condition_2. If it is true, the statements that immediately
follow are executed, up to the next Else If clause. The rest of the structure is then
ignored. This process continues until a condition is found to be true, or no more Else

16 Display "Your grade is C."
17 Else
18 If score < 90 Then
19 Display "Your grade is B."
20 Else
21 Display "Your grade is A."
22 End If
23 End If
24 End If
25 End If

Program Output (with Input Shown in Bold)

Enter your test score.
78 [Enter]
Your grade is C.

Program Output (with Input Shown in Bold)

Enter your test score.
84 [Enter]
Your grade is B.

⎫
⎬ If condition_1 is true these statements are executed,
⎭ and the rest of the structure is ignored.

⎫
⎬ If condition_2 is true these statements are executed,
⎭ and the rest of the structure is ignored.

⎫
⎬ These statements are executed if none of the
⎭ conditions above are true.

4.4 Nested Decision Structures 147

If clauses are left. If none of the conditions are true, the statements following the Else
clause are executed.

The pseudocode in Program 4-7 shows an example of the If-Then-Else If statement.
This program works the same as Program 4-6. Instead of using a nested decision struc-
ture, this program uses the If-Then-Else If statement in lines 9 through 19.

Program 4-7

1 // Variable to hold the test score
2 Declare Real score
3
4 // Get the test score.
5 Display "Enter your test score."
6 Input score
7
8 // Determine the grade.
9 If score < 60 Then
10 Display "Your grade is F."
11 Else If score < 70 Then
12 Display "Your grade is D."
13 Else If score < 80 Then
14 Display "Your grade is C."
15 Else If score < 90 Then
16 Display "Your grade is B."
17 Else
18 Display "Your grade is A."
19 End If

Program Output (with Input Shown in Bold)

Enter your test score.
78 [Enter]
Your grade is C.

Program Output (with Input Shown in Bold)

Enter your test score.
84 [Enter]
Your grade is B.

Notice the alignment and indentation that are used with the If-Then-Else If state-
ment: The If, Else If, Else, and End If clauses are all aligned, and the condition-
ally executed statements are indented.

You never have to use the If-Then-Else If statement because its logic can be coded
with nested If-Then-Else statements. However, a long series of nested If-Then-Else
statements has two particular disadvantages when you are debugging code:

● The code can grow complex and become difficult to understand.
● Because indenting is important in nested statements, a long series of nested If-

Then-Else statements can become too long to be displayed on the computer
screen without horizontal scrolling. Also, long statements tend to “wrap around”
when printed on paper, making the code even more difficult to read.

The logic of an If-Then-Else If statement is usually easier to follow than a long
series of nested If-Then-Else statements. And, because all of the clauses are aligned
in an If-Then-Else If statement, the lengths of the lines in the statement tend to be
shorter.

Checkpoint

4.13 How does a dual alternative decision structure work?

4.14 What statement do you use in pseudocode to write a dual alternative decision
structure?

4.15 When you write an If-Then-Else statement, under what circumstances do
the statements that appear between the Else clause and the End If clause
execute?

4.16 Convert the following pseudocode to an If-Then-Else If statement:

If number == 1 Then
Display "One"

Else
If number == 2 Then

Display "Two"
Else

If number == 3 Then
Display "Three"

Else
Display "Unknown"

End If
End If

End If

4.5 The Case Structure

CONCEPT: The case structure lets the value of a variable or an expression deter-
mine which path of execution the program will take.

The case structure is a multiple alternative decision structure. It allows you to test the
value of a variable or an expression and then use that value to determine which state-
ment or set of statements to execute. Figure 4-18 shows an example of how a case
structure looks in a flowchart.

In the flowchart, the diamond symbol contains the name of a variable. If the variable contains
the value 1, the statement Display "January" is executed. If the variable contains the value
2 the statement Display "February" is executed. If the variable contains the value 3 the
statement Display "March" is executed. If the variable contains none of these values,
the statement labeled Default is executed. In this case, the statement
Display "Error: Invalid month" is executed.

To write a case structure in pseudocode we will use a Select Case statement. The gen-
eral format follows Figure 4-18.

148 Chapter 4 Decision Structures and Boolean Logic

The Case
Structure

VideoNote

4.5 The Case Structure 149

Select testExpression This is a variable or an expression.
Case value_1:

statement
statement
etc.

Case value_2:
statement
statement
etc.

Insert as many Case sections as necessary

Case value_N:
statement
statement
etc.

Default:
statement
statement
etc.

End Select This is the end of the structure.

The first line of the structure starts with the word Select, followed by a testExpression.
The testExpression is usually a variable, but in many languages it can also be any-
thing that gives a value (such as a math expression). Inside the structure there is one
or more blocks of statements that begin with a Case statement. Notice that the word
Case is followed by a value.

When the Select Case statement executes, it compares the value of the testExpression
with the values that follow each of the Case statements (from top to bottom). When it
finds a Case value that matches the testExpression’s value, the program branches to
the Case statement. The statements that immediately follow the Case statement are
executed, and then the program jumps out of the structure. If the testExpression does
not match any of the Case values, the program branches to the Default statement and
executes the statements that immediately follow it.

month

Display "January" Display "February" Display "March" Display "Error:
Invalid month"

1 2 3 Default

Figure 4-18 A case structure

These statements are executed if the
testExpression is equal to value_1.

These statements are executed if the
testExpression is equal to value_2.

These statements are executed if the testExpression
is not equal to any of the values listed after the Case
statements.

These statements are executed if the
testExpression is equal to value_N.

⎫
⎬
⎭

⎫
⎬
⎭

⎫
⎬
⎭

⎫
⎬
⎭

150 Chapter 4 Decision Structures and Boolean Logic

For example, the following pseudocode performs the same operation as the flowchart
shown in Figure 4-18:

Select month
Case 1:

Display "January"
Case 2:

Display "February"
Case 3:

Display "March"
Default:

Display "Error: Invalid month"
End Select

In this example, the testExpression is the month variable. If the value in the month
variable is 1, the program will branch to the Case 1: section and execute the
Display "January" statement that immediately follows it. If the value in the month
variable is 2, the program will branch to the Case 2: section and execute the Display
"February" statement that immediately follows it. If the value in the month variable
is 3, the program will branch to the Case 3: section and execute the Display "March"
statement that immediately follows it. If the value in the month variable is not 1, 2,
or 3, the program will branch to the Default: section; and if the value in the month
variable is 1, the program will branch to the Case 1: section and execute the Display
"Error: Invalid month" statement that immediately follows it.

NOTE: In many languages the case structure is called a switch statement.

Case structures are never required because the same logic can be achieved with nested
decision structures. For example, Figure 4-19 shows nested decision structures that are
equivalent to the case structure in Figure 4-18. In situations where they can be used,
however, case structures are more straightforward.

TrueFalse
month
== 1

TrueFalse
month
== 2

TrueFalse
month
== 3

Display "Error:
Invalid month"

Display "March"

Display "February"

Display "January"

Figure 4-19 Nested decision structures

4.5 The Case Structure 151

In the Spotlight:
Using a Case Structure
Lenny, who owns Lenny’s Stereo and Television, has asked you to write a program that
will let a customer pick one of three TV models and then displays the price and size of
the selected model. Here is the algorithm:

1. Get the TV model number.
2. If the model is 100, then display the information for that model.

Otherwise, if the model is 200, then display the information for that model.
Otherwise, if the model is 300, then display the information for that
model.

At first, you consider designing a nested decision structure to determine the model
number and display the correct information. But you realize that a case structure will
work just as well because a single value, the model number, will be used to determine
the action that the program will perform. The model number can be stored in a vari-
able, and that variable can be tested by the case structure. Assuming that the model
number is stored in a variable named modelNumber, Figure 4-20 shows a flowchart for
the case structure. Program 4-8 shows the pseudocode for the program.

modelNumber

Display "Price: $",
MODEL_100_PRICE

Display "Invalid
model number"

100 200 300 Default

Display "Price: $",
MODEL_200_PRICE

Display "Price: $",
MODEL_300_PRICE

Display "Size: ",
MODEL_100_SIZE

Display "Size: ",
MODEL_200_SIZE

Display "Size: ",
MODEL_300_SIZE

Figure 4-20 Flowchart for the case structure

152 Chapter 4 Decision Structures and Boolean Logic

Program 4-8

1 // Constants for the TV prices
2 Constant Real MODEL_100_PRICE = 199.99
3 Constant Real MODEL_200_PRICE = 269.99
4 Constant Real MODEL_300_PRICE = 349.99
5
6 // Constants for the TV sizes
7 Constant Integer MODEL_100_SIZE = 24
8 Constant Integer MODEL_200_SIZE = 27
9 Constant Integer MODEL_300_SIZE = 32
10
11 // Variable for the model number
12 Declare Integer modelNumber
13
14 // Get the model number.
15 Display "Which TV are you interested in?"
16 Display "The 100, 200, or 300?"
17 Input modelNumber
18
19 // Display the price and size.
20 Select modelNumber
21 Case 100:
22 Display "Price: $", MODEL_100_PRICE
23 Display "Size: ", MODEL_100_SIZE
24 Case 200:
25 Display "Price: $", MODEL_200_PRICE
26 Display "Size: ", MODEL_200_SIZE
27 Case 300:
28 Display "Price $", MODEL_300_PRICE
29 Display "Size: ", MODEL_300_SIZE
30 Default:
31 Display "Invalid model number"
32 End Select

Program Output (with Input Shown in Bold)

Which TV are you interested in?
The 100, 200, or 300?
100 [Enter]
Price: $199.99
Size: 24

Program Output (with Input Shown in Bold)

Which TV are you interested in?
The 100, 200, or 300?
200 [Enter]
Price: $269.99
Size: 27

4.6 Logical Operators 153

Program Output (with Input Shown in Bold)

Which TV are you interested in?
The 100, 200, or 300?
300 [Enter]
Price: $349.99
Size: 32

Program Output (with Input Shown in Bold)

Which TV are you interested in?
The 100, 200, or 300?
500 [Enter]
Invalid model number

NOTE : The details of writing a case structure differ from one language to an-
other. Because of the specific rules that each language uses for writing case struc-
tures, you might not be able to use the case structure for every multiple
alternative decision. In such an event, you can use the If-Then-Else If statement
or a nested decision structure.

Checkpoint

4.17 What is a multiple alternative decision structure?

4.18 How do you write a multiple alternative decision structure in pseudocode?

4.19 What does the case structure test, in order to determine which set of state-
ments to execute?

4.20 You need to write a multiple alternative decision structure, but the language
you are using will not allow you to perform the test you need in a Select
Case statement. What can you do to achieve the same results?

4.6 Logical Operators

CONCEPT: The logical AND operator and the logical OR operator allow you to
connect multiple Boolean expressions to create a compound
expression. The logical NOT operator reverses the truth of a Boolean
expression.

Programming languages provide a set of operators known as logical operators, which
you can use to create complex Boolean expressions. Table 4-3 describes these operators.

Table 4-4 shows examples of several compound Boolean expressions that use logical
operators.

154 Chapter 4 Decision Structures and Boolean Logic

Table 4-4 Compound Boolean expressions using logical operators

Expression Meaning

x > y AND a < b Is x greater than y AND is a less than b?

x == y OR x == z Is x equal to y OR is x equal to z?

NOT (x > y) Is the expression x > y NOT true?

NOTE : In many languages, most notably C, C++, and Java, the AND operator is
written as &&, the OR operator is written as ||, and the NOT operator is written
as !.

The AND Operator
The AND operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true only when both subexpressions are true. The following
is an example of an If-Then statement that uses the AND operator:

If temperature < 20 AND minutes > 12 Then
Display "The temperature is in the danger zone."

End If

In this statement, the two Boolean expressions temperature < 20 and minutes > 12
are combined into a compound expression. The Display statement will be executed
only if temperature is less than 20 AND minutes is greater than 12. If either of the
Boolean subexpressions is false, the compound expression is false and the message is not
displayed.

Table 4-5 shows a truth table for the AND operator. The truth table lists expressions
showing all the possible combinations of true and false connected with the AND
operator. The resulting values of the expressions are also shown.

Table 4-3 Logical operators

Operator Meaning

AND The AND operator connects two Boolean expressions into one compound
expression. Both subexpressions must be true for the compound expression
to be true.

OR The OR operator connects two Boolean expressions into one compound
expression. One or both subexpressions must be true for the compound expression
to be true. It is only necessary for one of the subexpressions to be true, and it does
not matter which.

NOT The NOT operator is a unary operator, meaning it works with only one operand.
The operand must be a Boolean expression. The NOT operator reverses the truth of
its operand. If it is applied to an expression that is true, the operator returns false.
If it is applied to an expression that is false, the operator returns true.

4.6 Logical Operators 155

As the table shows, both sides of the AND operator must be true for the operator to
return a true value.

The OR Operator
The OR operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true when either of the subexpressions is true. The following
is an example of an If-Then statement that uses the OR operator:

If temperature < 20 OR temperature > 100 Then
Display "The temperature is in the danger zone."

End If

The Display statement will execute only if temperature is less than 20 OR temper-
ature is greater than 100. If either subexpression is true, the compound expression is
true. Table 4-6 shows a truth table for the OR operator.

Table 4-5 Truth table for the AND operator

Expression Value of the Expression

true AND false false

false AND true false

false AND false false

true AND true true

Table 4-6 Truth table for the OR operator

Expression Value of the Expression

true OR false true

false OR true true

false OR false false

true OR true true

All it takes for an OR expression to be true is for one side of the OR operator to be true.
It doesn’t matter if the other side is false or true.

Short-Circuit Evaluation

In many languages both the AND and OR operators perform short-circuit evaluation.
Here’s how it works with the AND operator: If the expression on the left side of the
AND operator is false, the expression on the right side will not be checked. Because the
compound expression will be false if only one of the subexpressions is false, it would
waste CPU time to check the remaining expression. So, when the AND operator finds
that the expression on its left is false, it short-circuits and does not evaluate the
expression on its right.

Here’s how short-circuit evaluation works with the OR operator: If the expression on
the left side of the OR operator is true, the expression on the right side will not be
checked. Because it is only necessary for one of the expressions to be true, it would
waste CPU time to check the remaining expression.

156 Chapter 4 Decision Structures and Boolean Logic

The NOT Operator
The NOT operator is a unary operator that takes a Boolean expression as its operand and
reverses its logical value. In other words, if the expression is true, the NOT operator re-
turns false, and if the expression is false, the NOT operator returns true. The following
is an If-Then statement using the NOT operator:

If NOT(temperature > 100) Then
Display "This is below the maximum temperature."

End If

First, the expression (temperature > 100) is tested and a value of either true or false
is the result. Then the NOT operator is applied to that value. If the expression
(temperature > 100) is true, the NOT operator returns false. If the expression
(temperature > 100) is false, the NOT operator returns true. The previous code is
equivalent to asking: “Is the temperature not greater than 100?”

NOTE: In this example, we have put parentheses around the expression temperature >
100. The reason for this is that, in many languages, the NOT operator has higher prece-
dence than the relational operators. Suppose we wrote the expression as follows:

NOT temperature > 100

In many languages this expression would not work correctly because the NOT oper-
ator would be applied to the temperature variable, not the expression
temperature > 100. To make sure that the operator is applied to the expression,
we enclose it in parentheses.

Table 4-7 Truth table for the NOT operator

Expression Value of the Expression

NOT true false

NOT false true

Table 4-7 shows a truth table for the NOT operator.

The Loan Qualifier Program Revisited
In some situations the AND operator can be used to simplify nested decision structures.
For example, recall that the loan qualifier program in Program 4-5 uses the following
nested If-Then-Else statements:

If salary >= 30000 Then
If yearsOnJob >= 2 Then

Display "You qualify for the loan."
Else

Display "You must have been on your current"
Display "job for at least two years to qualify."

End If
Else

Display "You must earn at least $30,000"
Display "per year to qualify."

End If

4.6 Logical Operators 157

The purpose of this decision structure is to determine that a person’s salary is at
least $30,000 and that he or she has been at his or her current job for at least two
years. Program 4-9 shows a way to perform a similar task with simpler code.

Program 4-9

1 // Declare variables
2 Declare Real salary, yearsOnJob
3
4 // Get the annual salary.
5 Display "Enter your annual salary."
6 Input salary
7
8 // Get the number of years on the current job.
9 Display "Enter the number of years on your ",
10 "current job."
11 Input yearsOnJob
12
13 // Determine whether the user qualifies.
14 If salary >= 30000 AND yearsOnJob >= 2 Then
15 Display "You qualify for the loan."
16 Else
17 Display "You do not qualify for this loan."
18 End If

Program Output (with Input Shown in Bold)

Enter your annual salary.
35000 [Enter]
Enter the number of years on your current job.
1 [Enter]
You do not qualify for this loan.

Program Output (with Input Shown in Bold)

Enter your annual salary.
25000 [Enter]
Enter the number of years on your current job.
5 [Enter]
You do not qualify for this loan.

Program Output (with Input Shown in Bold)

Enter your annual salary.
35000 [Enter]
Enter the number of years on your current job.
5 [Enter]
You qualify for the loan.

The If-Then-Else statement in lines 14 through 18 tests the compound expression
salary >= 30000 AND yearsOnJob >= 2. If both subexpressions are true, the com-
pound expression is true and the message “You qualify for the loan” is displayed. If
either of the subexpressions is false, the compound expression is false and the message
“You do not qualify for this loan” is displayed.

158 Chapter 4 Decision Structures and Boolean Logic

Yet Another Loan Qualifier Program
Suppose the bank is losing customers to a competing bank that isn’t as strict about
whom it loans money to. In response, the bank decides to change its loan require-
ments. Now, customers have to meet only one of the previous conditions, not both.
Program 4-10 shows the pseudocode for the new loan qualifier program. The com-
pound expression that is tested by the If-Then-Else statement in line 14 now
uses the OR operator.

Program 4-10

1 // Declare variables
2 Declare Real salary, yearsOnJob
3
4 // Get the annual salary.
5 Display "Enter your annual salary."
6 Input salary
7
8 // Get the number of years on the current job.
9 Display "Enter the number of years on your"
10 Display "current job."
11 Input yearsOnJob
12
13 // Determine whether the user qualifies.
14 If salary >= 30000 OR yearsOnJob >= 2 Then
15 Display "You qualify for the loan."
16 Else
17 Display "You do not qualify for this loan."
18 End If

Program Output (with Input Shown in Bold)

Enter your annual salary.
35000 [Enter]
Enter the number of years on your
current job.
1 [Enter]
You qualify for the loan.

Program Output (with Input Shown in Bold)

Enter your annual salary.
25000 [Enter]
Enter the number of years on your
current job.
5 [Enter]
You qualify for the loan.

NOTE: A careful observer will realize that Program 4-9 is similar to Program 4-5,
but it is not equivalent. If the user does not qualify for the loan, Program 4-9 displays
only the message “You do not qualify for this loan,” whereas Program 4-5 displays
one of two possible messages explaining why the user did not qualify.

4.6 Logical Operators 159

Program Output (with Input Shown in Bold)

Enter your annual salary.
12000 [Enter]
Enter the number of years on your
current job.
1 [Enter]
You do not qualify for this loan.

Checking Numeric Ranges with Logical Operators
Sometimes you will need to design an algorithm that determines whether a numeric
value is within a specific range of values or outside a specific range of values. When
determining whether a number is inside a range, it is best to use the AND operator. For
example, the following If-Then statement checks the value in x to determine whether
it is in the range of 20 through 40:

If x >= 20 AND x <= 40 Then
Display "The value is in the acceptable range."

End If

The compound Boolean expression being tested by this statement will be true only
when x is greater than or equal to 20 AND less than or equal to 40. The value in x
must be within the range of 20 through 40 for this compound expression to be true.

When determining whether a number is outside a range, it is best to use the OR
operator. The following statement determines whether x is outside the range of
20 through 40:

If x < 20 OR x > 40 Then
Display "The value is outside the acceptable range."

End If

It is important not to get the logic of the logical operators confused when testing for a
range of numbers. For example, the compound Boolean expression in the following
pseudocode would never test true:

// This is an error!
If x < 20 AND x > 40 Then

Display "The value is outside the acceptable range."
End If

Obviously, x cannot be less than 20 and at the same time be greater than 40.

Checkpoint

4.21 What is a compound Boolean expression?

4.22 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by circling T or F to
indicate whether the result of such a combination is true or false.

Logical Expression Result (circle T or F)
True AND False T F
True AND True T F (continues next page)

160 Chapter 4 Decision Structures and Boolean Logic

Logical Expression Result (circle T or F)
False AND True T F
False AND False T F
True OR False T F
True OR True T F
False OR True T F
False OR False T F
NOT True T F
NOT False T F

4.23 Assume the variables a = 2, b = 4, and c = 6. Circle the T or F for each of the
following conditions to indicate whether its value is true or false.

a == 4 OR b > 2 T F
6 <= c AND a > 3 T F
1 != b AND c != 3 T F
a >= -1 OR a <= b T F
NOT (a > 2) T F

4.24 Explain how short-circuit evaluation works with the AND and OR operators.

4.25 Write an If-Then statement that displays the message “The number is valid”
if the variable speed is within the range 0 through 200.

4.26 Write an If-Then statement that displays the message “The number is not
valid” if the variable speed is outside the range 0 through 200.

4.7 Boolean Variables

CONCEPT: A Boolean variable can hold one of two values: true or false. Boolean
variables are commonly used as flags, which indicate whether specific
conditions exist.

So far in this book we have worked with Integer, Real, and String variables. In
addition to numeric and string data types, most programming languages provide a
Boolean data type. The Boolean data type allows you to create variables that may
hold one of two possible values: True or False. Here is an example of the way we
declare Boolean variables in this book:

Declare Boolean isHungry

Most programming languages have key words such as True and False that can be
assigned to Boolean variables. Here are examples of how we assign values to a
Boolean variable:

Set isHungry = True
Set isHungry = False

Boolean variables are most commonly used as flags. A flag is a variable that signals
when some condition exists in the program. When the flag variable is set to False,

Review Questions 161

Review Questions

Multiple Choice

1. A __________ structure can execute a set of statements only under certain
circumstances.

a. sequence
b. circumstantial
c. decision
d. Boolean

2. A __________ structure provides one alternative path of execution.

a. sequence
b. single alternative decision
c. one path alternative
d. single execution decision

it indicates the condition does not exist. When the flag variable is set to True, it
means the condition does exist.

For example, suppose a salesperson has a quota of $50,000. Assuming the sales
variable holds the amount that the salesperson has sold, the following pseudocode
determines whether the quota has been met:

If sales >= 50000 Then
Set salesQuotaMet = True

Else
Set salesQuotaMet = False

End If

As a result of this code, the salesQuotaMet variable can be used as a flag to indicate
whether the sales quota has been met. Later in the program we might test the flag in the
following way:

If salesQuotaMet Then
Display "You have met your sales quota!"

End If

This code displays the message “You have met your sales quota!” if the Boolean vari-
able salesQuotaMet equals True. Notice that we did not have to use the == operator
to explicitly compare the salesQuotaMet variable with the value True. This code is
equivalent to the following:

If salesQuotaMet == True Then
Display "You have met your sales quota!"

End If

Checkpoint

4.27 What values can you store in a Boolean variable?

4.28 What is a flag variable?

162 Chapter 4 Decision Structures and Boolean Logic

3. In pseudocode, the If-Then statement is an example of a __________.

a. sequence structure
b. decision structure
c. pathway structure
d. class structure

4. A(n) __________ expression has a value of either true or false.

a. binary
b. decision
c. unconditional
d. Boolean

5. The symbols >, <, and == are all __________ operators.

a. relational
b. logical
c. conditional
d. ternary

6. A(n) __________ structure tests a condition and then takes one path if the condi-
tion is true, or another path if the condition is false.

a. If-Then statement
b. single alternative decision
c. dual alternative decision
d. sequence

7. You use a(n) __________ statement in pseudocode to write a single alternative
decision structure.

a. Test-Jump
b. If-Then
c. If-Then-Else
d. If-Call

8. You use a(n) __________ statement in pseudocode to write a dual alternative
decision structure.

a. Test-Jump
b. If-Then
c. If-Then-Else
d. If-Call

9. A __________ structure allows you to test the value of a variable or an expres-
sion and then use that value to determine which statement or set of statements to
execute.

a. variable test decision
b. single alternative decision
c. dual alternative decision
d. multiple alternative decision

Review Questions 163

10. A(n) __________ section of a Select Case statement is branched to if none of the
case values match the expression listed after the Select statement.

a. Else
b. Default
c. Case
d. Otherwise

11. AND, OR, and NOT are __________ operators.

a. relational
b. logical
c. conditional
d. ternary

12. A compound Boolean expression created with the __________ operator is true only
if both of its subexpressions are true.

a. AND
b. OR
c. NOT
d. BOTH

13. A compound Boolean expression created with the __________ operator is true if
either of its subexpressions is true.

a. AND
b. OR
c. NOT
d. EITHER

14. The __________ operator takes a Boolean expression as its operand and reverses
its logical value.

a. AND
b. OR
c. NOT
d. EITHER

15. A __________ is a Boolean variable that signals when some condition exists in the
program.

a. flag
b. signal
c. sentinel
d. siren

True or False

1. You can write any program using only sequence structures.

2. A program can be made of only one type of control structure. You cannot combine
structures.

164 Chapter 4 Decision Structures and Boolean Logic

3. A single alternative decision structure tests a condition and then takes one path if
the condition is true, or another path if the condition is false.

4. A decision structure can be nested inside another decision structure.

5. A compound Boolean expression created with the AND operator is true only when
both subexpressions are true.

Short Answer

1. Explain what is meant by the term conditionally executed.

2. You need to test a condition and then execute one set of statements if the condition
is true. If the condition is false, you need to execute a different set of statements.
What structure will you use?

3. If you need to test the value of a variable and use that value to determine which
statement or set of statements to execute, which structure would be the most
straightforward to use?

4. Briefly describe how the AND operator works.

5. Briefly describe how the OR operator works.

6. When determining whether a number is inside a range, which logical operator is it
best to use?

7. What is a flag and how does it work?

Algorithm Workbench

1. Design an If-Then statement (or a flowchart with a single alternative decision
structure) that assigns 20 to the variable y and assigns 40 to the variable z if the
variable x is greater than 100.

2. Design an If-Then statement (or a flowchart with a single alternative decision
structure) that assigns 0 to the variable b and assigns 1 to the variable c if the
variable a is less than 10.

3. Design an If-Then-Else statement (or a flowchart with a dual alternative decision
structure) that assigns 0 to the variable b if the variable a is less than 10. Otherwise,
it should assign 99 to the variable b.

4. The following pseudocode contains several nested If-Then-Else statements.
Unfortunately, it was written without proper alignment and indentation. Rewrite
the code and use the proper conventions of alignment and indentation.
If score < 60 Then
Display "Your grade is F."
Else
If score < 70 Then
Display "Your grade is D."
Else
If score < 80 Then
Display "Your grade is C."
Else

If score < 90 Then
Display "Your grade is B."
Else
Display "Your grade is A."
End If
End If
End If
End If

5. Design nested decision structures that perform the following: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of amount1 and
amount2.

6. Rewrite the following If-Then-Else If statement as a Select Case statement.
If selection == 1 Then

Display "You selected A."
Else If selection == 2 Then

Display "You selected 2."
Else If selection == 3 Then

Display "You selected 3."
Else If selection == 4 Then

Display "You selected 4."
Else

Display "Not good with numbers, eh?"
End If

7. Design an If-Then-Else statement (or a flowchart with a dual alternative deci-
sion structure) that displays “Speed is normal” if the speed variable is within the
range of 24 to 56. If speed holds a value outside this range, display “Speed is
abnormal.”

8. Design an If-Then-Else statement (or a flowchart with a dual alternative deci-
sion structure) that determines whether the points variable is outside the range of
9 to 51. If the variable holds a value outside this range it should display “Invalid
points.” Otherwise, it should display “Valid points.”

9. Design a case structure that tests the month variable and does the following:
● If the month variable is set to 1, it displays “January has 31 days.”
● If the month variable is set to 2, it displays “February has 28 days.”
● If the month variable is set to 3, it displays “March has 31 days.”
● If the month variable is set to anything else, it displays “Invalid selection.”

10. Write an If-Then statement that sets the variable hours to 10 when the flag
variable minimum is set.

Debugging Exercises
1. Part of the following pseudocode is incompatible with the Java, Python, C, and

C++ languages. Identify the problem. How would you fix the problem if you were
to translate this pseudocode into one of the aforementioned languages?
Module checkEquality(Integer num1, Integer num2)

If num1 = num2 Then
Display "The values are equal."

Else
Display "The values are NOT equal."

End If
End Module

Debugging Exercises 165

166 Chapter 4 Decision Structures and Boolean Logic

2. The intended purpose of the following module is to set the temp parameter to the
value 32.0 if it is not already equal to 32.0. This will not work as the programmer
expects, however. Find the problem.
Module resetTemperature(Real Ref temp)

If NOT temp == 32.0 Then
Set temp = 32.0

End If
End Module

3. The intended purpose of the following module is to determine whether the value
parameter is within a specified range. The module will not work, however. Find the
problem.
Module checkRange(Integer value, Integer lower, Integer upper)

If value < lower AND value > upper Then
Display "The value is outside the range."

Else
Display "The value is within the range."

End If
End Module

Programming Exercises
1. Roman Numerals

Design a program that prompts the user to enter a number within the range of 1
through 10. The program should display the Roman numeral version of that num-
ber. If the number is outside the range of 1 through 10, the program should display
an error message.

2. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Design a program
that asks for the length and width of two rectangles. The program should tell the
user which rectangle has the greater area, or whether the areas are the same.

3. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in Newtons. If you
know the amount of mass of an object, you can calculate its weight, in Newtons,
with the following formula:

Weight = Mass × 9.8

Design a program that asks the user to enter an object’s mass, and then calculates
its weight. If the object weighs more than 1,000 Newtons, display a message indi-
cating that it is too heavy. If the object weighs less than 10 Newtons, display a
message indicating that it is too light.

4. Magic Dates

The date June 10, 1960, is special because when it is written in the following
format, the month times the day equals the year:

6/10/60

The Areas of
Rectangles Problem

VideoNote

Programming Exercises 167

Design a program that asks the user to enter a month (in numeric form), a day, and
a two-digit year. The program should then determine whether the month times the
day equals the year. If so, it should display a message saying the date is magic. Oth-
erwise, it should display a message saying the date is not magic.

5. Color Mixer

The colors red, blue, and yellow are known as the primary colors because they
cannot be made by mixing other colors. When you mix two primary colors, you
get a secondary color, as shown here:
● When you mix red and blue, you get purple.
● When you mix red and yellow, you get orange.
● When you mix blue and yellow, you get green.

Design a program that prompts the user to enter the names of two primary colors
to mix. If the user enters anything other than “red,” “blue,” or “yellow,” the pro-
gram should display an error message. Otherwise, the program should display the
name of the secondary color that results.

6. Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based
on the number of books purchased each month. The points are awarded as follows:
● If a customer purchases 0 books, he or she earns 0 points.
● If a customer purchases 1 book, he or she earns 5 points.
● If a customer purchases 2 books, he or she earns 15 points.
● If a customer purchases 3 books, he or she earns 30 points.
● If a customer purchases 4 or more books, he or she earns 60 points.

Design a program that asks the user to enter the number of books that he or she
has purchased this month and displays the number of points awarded.

7. Software Sales

A software company sells a package that retails for $99. Quantity discounts are
given according to the following table:

Quantity Discount
10–19 20%
20–49 30%
50–99 40%
100 or more 50%

Design a program that asks the user to enter the number of packages purchased.
The program should then display the amount of the discount (if any) and the total
amount of the purchase after the discount.

8. Change for a Dollar Game

Design a change-counting game that gets the user to enter the number of coins
required to make exactly one dollar. The program should ask the user to enter
the number of pennies, nickels, dimes, and quarters. If the total value of the
coins entered is equal to one dollar, the program should congratulate the user for
winning the game. Otherwise, the program should display a message indicating
whether the amount entered was more than or less than one dollar.

168 Chapter 4 Decision Structures and Boolean Logic

9. Shipping Charges

The Fast Freight Shipping Company charges the following rates:

Weight of Package Rate per Pound
2 pounds or less $1.10
Over 2 pounds but not more than 6 pounds $2.20
Over 6 pounds but not more than 10 pounds $3.70
Over 10 pounds $3.80

Design a program that asks the user to enter the weight of a package and then
displays the shipping charges.

10. Body Mass Index Program Enhancement

In Programming Exercise 6 in Chapter 3 you were asked to design a program
that calculates a person’s body mass index (BMI). Recall from that exercise that
the BMI is often used to determine whether a person with a sedentary lifestyle is
overweight or underweight for his or her height. A person’s BMI is calculated
with the following formula:

BMI = Weight × 703 / Height2

In the formula, weight is measured in pounds and height is measured in inches.
Enhance the program so it displays a message indicating whether the person has
optimal weight, is underweight, or is overweight. A sedentary person’s weight is
considered to be optimal if his or her BMI is between 18.5 and 25. If the BMI is less
than 18.5, the person is considered to be underweight. If the BMI value is greater
than 25, the person is considered to be overweight.

11. Time Calculator

Design a program that asks the user to enter a number of seconds, and works as
follows:
● There are 60 seconds in a minute. If the number of seconds entered by the user

is greater than or equal to 60, the program should display the number of min-
utes in that many seconds.

● There are 3,600 seconds in an hour. If the number of seconds entered by the
user is greater than or equal to 3,600, the program should display the number of
hours in that many seconds.

● There are 86,400 seconds in a day. If the number of seconds entered by the user
is greater than or equal to 86,400, the program should display the number of
days in that many seconds.

TOPICS

5.1 Introduction to Repetition Structures

5.2 Condition-Controlled Loops: While,
Do-While, and Do-Until

5.3 Count-Controlled Loops and the For
Statement

5.4 Calculating a Running Total

5.5 Sentinels

5.6 Nested Loops

Repetition Structures

5.1 Introduction to Repetition Structures

CONCEPT: A repetition structure causes a statement or set of statements to execute
repeatedly.

Programmers commonly have to write code that performs the same task over and over.
For example, suppose you have been asked to write a program that calculates a 10 percent
sales commission for several salespeople. Although it would not be a good design, one
approach would be to write the code to calculate one salesperson’s commission, and then
repeat that code for each salesperson. For example, look at the following pseudocode:

// Variables for sales and commission.
Declare Real sales, commission

// Constant for the commission rate.
Constant Real COMMISSION_RATE = 0.10

// Get the amount of sales.
Display "Enter the amount of sales."
Input sales

// Calculate the commission.
Set commission = sales * COMMISSION_RATE

// Display the commission
Display "The commission is $", commission

C
H

A
P

T
E

R

5

169

⎫
⎪
⎪
⎪
⎬ This calculates the first

⎪ salesperson’s commission.

⎪
⎪
⎭

170 Chapter 5 Repetition Structures

// Get the amount of sales.
Display "Enter the amount of sales."
Input sales

// Calculate the commission.
Set commission = sales * COMMISSION_RATE

// Display the commission
Display "The commission is $", commission

And this code goes on and on . . .

As you can see, this is one long sequence structure containing a lot of duplicated code.
There are several disadvantages to this approach, including the following:

● The duplicated code makes the program large.
● Writing a long sequence of statements can be time consuming.
● If part of the duplicated code has to be corrected or changed, then the correction

or change has to be done many times.

Instead of writing the same sequence of statements over and over, a better way to re-
peatedly perform an operation is to write the code for the operation once, and then
place that code in a structure that makes the computer repeat it as many times as nec-
essary. This can be done with a repetition structure, which is more commonly known
as a loop.

Condition-Controlled and
Count-Controlled Loops
In this chapter, we will look at two broad categories of loops: condition-controlled and
count-controlled. A condition-controlled loop uses a true/false condition to control the
number of times that it repeats. A count-controlled loop repeats a specific number of
times. We will also discuss the specific ways that most programming languages allow
you to construct these types of loops.

Checkpoint

5.1 What is a repetition structure?

5.2 What is a condition-controlled loop?

5.3 What is a count-controlled loop?

5.2 Condition-Controlled Loops:
While, Do-While, and Do-Until

CONCEPT: Both the While and Do-While loops cause a statement or set of state-
ments to repeat as long as a condition is true. The Do-Until loop
causes a statement or set of statements to repeat until a condition is
true.

⎫
⎪
⎪
⎪
⎬ This calculates the second

⎪ salesperson’s commission.

⎪
⎪
⎭

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 171

Statement(s)Condition
True

False

Figure 5-1 The logic of a While loop

The While Loop
The While loop gets its name from the way it works: While a condition is true, do
some task. The loop has two parts: (1) a condition that is tested for a true or false
value, and (2) a statement or set of statements that is repeated as long as the condition
is true. Figure 5-1 shows the logic of a While loop.

The diamond symbol represents the condition that is tested. Notice what happens if the
condition is true: one or more statements are executed and the program’s execution
flows back to the point just above the diamond symbol. The condition is tested again,
and if it is true, the process repeats. If the condition is false, the program exits the loop.
In a flowchart, you will always recognize a loop when you see a flow line going back to
a previous part of the flowchart.

Writing a While Loop in Pseudocode
In pseudocode, we will use the While statement to write a While loop. Here is the
general format of the While statement:

While condition
statement
statement
etc.

End While

In the general format, the condition is a Boolean expression, and the statements that
appear on the lines between the While and the End While clauses are called the body
of the loop. When the loop executes, the condition is tested. If it is true, the statements
that appear in the body of the loop are executed, and then the loop starts over. If the
condition is false, the program exits the loop.

As shown in the general format, you should use the following conventions when you
write a While statement:

● Make sure the While clause and the End While clause are aligned.
● Indent the statements in the body of the loop.

⎫
⎬ These statements are the body of the loop. They are

⎭ repeated while the condition is true.

The While Loop

VideoNote

172 Chapter 5 Repetition Structures

By indenting the statements in the body of the loop you visually set them apart from
the surrounding code. This makes your program easier to read and debug. Also, this is
similar to the style that most programmers follow when writing loops in actual code.

Program 5-1 shows how we might use a While loop to write the commission calculat-
ing program that was described at the beginning of this chapter.

Program 5-1

1 // Variable declarations
2 Declare Real sales, commission
3 Declare String keepGoing = "y"
4
5 // Constant for the commission rate
6 Constant Real COMMISSION_RATE = 0.10
7
8 While keepGoing == "y"
9 // Get the amount of sales.
10 Display "Enter the amount of sales."
11 Input sales
12
13 // Calculate the commission.
14 Set commission = sales * COMMISSION_RATE
15
16 // Display the commission
17 Display "The commission is $", commission
18
19 Display "Do you want to calculate another"
20 Display "commission? (Enter y for yes.)"
21 Input keepGoing
22 End While

Program Output (with Input Shown in Bold)

Enter the amount of sales.
10000.00 [Enter]
The commission is $1000
Do you want to calculate another
commission? (Enter y for yes.)
y [Enter]
Enter the amount of sales.
5000.00 [Enter]
The commission is $500
Do you want to calculate another
commission? (Enter y for yes.)
y [Enter]
Enter the amount of sales.
12000.00 [Enter]
The commission is $1200
Do you want to calculate another
commission? (Enter y for yes.)
n [Enter]

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 173

In line 2, we declare the sales variable, which will hold the amount of sales, and the
commission variable, which will hold the amount of commission. Then, in line 3 we
declare a String variable named keepGoing. Notice that the variable is initialized
with the value “y.” This initialization value is important, and in a moment you will see
why. In line 6 we declare a constant, COMMISSION_RATE, which is initialized with the
value 0.10. This is the commission rate that we will use in our calculation.

Line 8 is the beginning of a While loop, which starts like this:

While keepGoing == "y"

Notice the condition that is being tested: keepGoing == "y". The loop tests this condi-
tion, and if it is true, the statements in the body of the loop (lines 9 through 21) are ex-
ecuted. Then, the loop starts over at line 8. It tests the expression keepGoing == "y"
and if it is true, the statements in the body of the loop are executed again. This cycle re-
peats until the expression keepGoing == "y" is tested in line 8 and found to be false.
When that happens, the program exits the loop. This is illustrated in Figure 5-2.

In order for this loop to stop executing, something has to happen inside the loop to
make the expression keepGoing == "y" false. The statements in lines 19 through 21
take care of this. Lines 19 and 20 display a message asking “Do you want to calculate
another commission? (Enter y for yes).” Then, the Input statement in line 21 reads the
user’s input and stores it in the keepGoing variable. If the user enters y (and it must be
a lowercase y), then the expression keepGoing == "y" will be true when the loop starts
over. This will cause the statements in the body of the loop to execute again. But, if the
user enters anything other than lowercase y, the expression will be false when the loop
starts over, and the program will exit the loop.

While keepGoing == "y"

 // Get the amount of sales.
 Display "Enter the amount of sales."
 Input sales

 // Calculate the commission.
 Set commission = sales * COMMISSION_RATE

 // Display the commission
 Display "The commission is $", commission

 Display "Do you want to calculate another"
 Display "commission? (Enter y for yes.)"
 Input keepGoing

End While

This condition is tested.

If the condition is true,
these statements are
executed, and then the
loop starts over.

If the condition is false,
these statements are
skipped and the
program exits the loop.

Figure 5-2 The While loop

Now that you have examined the pseudocode, look at the program output in the
sample run. First, the program prompted the user to enter the amount of sales. The
user entered 10000.00, and then the program displayed the commission for that
amount, which is $1000.00. Then, the user is prompted “Do you want to calculate

174 Chapter 5 Repetition Structures

another commission? (Enter y for yes.)” The user entered y, and the loop started the
steps over. In the sample run, the user went through this process three times. Each
execution of the body of a loop is known as an iteration. In the sample run, the loop
iterated three times.

Figure 5-3 shows a flowchart for Program 5-1. By looking at this flowchart you can see
that we have a repetition structure (the While loop) with a sequence structure (the
body of the loop) nested inside it. The fundamental structure of the While loop is still
present, however. A condition is tested, and if it is true one or more statements are ex-
ecuted and the flow of execution returns to the point just above the conditional test.

Start

keepGoing == "y"

False

End

True

Declare Real sales, commission
Declare String keepGoing = "y"
Constant Real COMMISSION_RATE
 = 0.10

Display "Do you want to
calculate another"

Input keepGoing

Display "commission?
(Enter y for yes)"

Set commission = sales
* COMMISSION_RATE

Display "Enter the
amount of sales."

Input sales

Display "The
commission is $",

commission

Figure 5-3 Flowchart for Program 5-1

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 175

The While Loop Is a Pretest Loop
The While loop is known as a pretest loop, which means it tests its condition before
performing an iteration. Because the test is done at the beginning of the loop, you usu-
ally have to perform some steps prior to the loop to make sure that the loop executes at
least once. For example, the loop in Program 5-1 starts like this:

While keepGoing == "y"

The loop will perform an iteration only if the expression keepGoing == "y" is true. To
make sure the expression is true the first time that the loop executes, we declared and
initialized the keepGoing variable in line 3 as follows:

Declare String keepGoing = "y"

If keepGoing had been initialized with any other value (or not initialized at all), the
loop would never execute. This is an important characteristic of the While loop: it will
never execute if its condition is false to start with. In some programs, this is exactly
what you want. The following In the Spotlight section gives an example.

In the Spotlight:
Designing a While Loop
A project currently underway at Chemical Labs, Inc. requires that a substance be con-
tinually heated in a vat. A technician must check the substance’s temperature every
15 minutes. If the substance’s temperature does not exceed 102.5, then the technician
does nothing. However, if the temperature is greater than 102.5, the technician must
turn down the vat’s thermostat, wait five minutes, and check the temperature again.
The technician repeats these steps until the temperature does not exceed 102.5. The di-
rector of engineering has asked you to design a program that guides the technician
through this process.

Here is the algorithm:

1. Get the substance’s temperature.
2. Repeat the following steps as long as the temperature is greater than 102.5:

a. Tell the technician to turn down the thermostat, wait five minutes, and check
the temperature again.

b. Get the substance’s temperature.
3. After the loop finishes, tell the technician that the temperature is acceptable and

to check it again in 15 minutes.

After reviewing this algorithm, you realize that steps 2(a) and 2(b) should not be
performed if the test condition (temperature is greater than 102.5) is false to begin
with. The While loop will work well in this situation, because it will not execute even
once if its condition is false. Program 5-2 shows the pseudocode for the program, and
Figure 5-4 shows a flowchart.

176 Chapter 5 Repetition Structures

Program 5-2

1 // Variable to hold the temperature
2 Declare Real temperature
3
4 // Constant for the maximum temperature
5 Constant Real MAX_TEMP = 102.5
6
7 // Get the substance's temperature.
8 Display "Enter the substance's temperature."
9 Input temperature
10
11 // If necessary, adjust the thermostat.
12 While temperature > MAX_TEMP
13 Display "The temperature is too high."
14 Display "Turn the thermostat down and wait"
15 Display "five minutes. Take the temperature"
16 Display "again and enter it here."
17 Input temperature
18 End While
19
20 // Remind the user to check the temperature
21 // again in 15 minutes.
22 Display "The temperature is acceptable."
23 Display "Check it again in 15 minutes."

Program Output (with Input Shown in Bold)

Enter the substance's temperature.
104.7 [Enter]
The temperature is too high.
Turn the thermostat down and wait
five minutes. Take the temperature
again and enter it here.
103.2 [Enter]
The temperature is too high.
Turn the thermostat down and wait
five minutes. Take the temperature
again and enter it here.
102.1 [Enter]
The temperature is acceptable.
Check it again in 15 minutes.

Program Output (with Input Shown in Bold)

Enter the substance's temperature.
102.1 [Enter]
The temperature is acceptable.
Check it again in 15 minutes.

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 177

End

Start

Display "Enter the
substance's

temperature."

Declare Real temperature
Constant Real MAX_TEMP

= 102.5

temperature >
MAX_TEMP

Input temperature

True

False

Display "The temperature is
too high."

Display "Turn the thermostat
down and wait"

Display "five minutes. Take
the temperature"

Display "and enter it here."

Input temperature

Display "The temperature
is acceptable."

Display "Check it again in
15 minutes."

Figure 5-4 Flowchart for Program 5-2

178 Chapter 5 Repetition Structures

Infinite Loops
In all but rare cases, loops must contain within themselves a way to terminate. This
means that something inside the loop must eventually make the test condition false.
The loop in Program 5-1 stops when the expression keepGoing == "y" is false. If a
loop does not have a way of stopping, it is called an infinite loop. An infinite loop con-
tinues to repeat until the program is interrupted. Infinite loops usually occur when the
programmer forgets to write code inside the loop that makes the test condition false. In
most circumstances you should avoid writing infinite loops.

The pseudocode in Program 5-3 demonstrates an infinite loop. This is a modified ver-
sion of the commission calculating program. In this version, we have removed the
code that modifies the keepGoing variable in the body of the loop. Each time the
expression keepGoing == "y" is tested in line 9, keepGoing will contain the string
"y". As a consequence, the loop has no way of stopping.

Program 5-3

1 // Variable declarations
2 Declare Real sales, commission
3 Declare String keepGoing = "y"
4
5 // Constant for the commission rate
6 Constant Real COMMISSION_RATE = 0.10
7
8 // Warning! Infinite loop!
9 While keepGoing == "y"
10 // Get the amount of sales.
11 Display "Enter the amount of sales."
12 Input sales
13
14 // Calculate the commission.
15 Set commission = sales * COMMISSION_RATE
16
17 // Display the commission
18 Display "The commission is $", commission
19 End While

Modularizing the Code in the Body of a Loop
Modules can be called from statements in the body of a loop. In fact, modularizing the
code in a loop often improves the design. For example, in Program 5-1, the statements
that get the amount of sales, calculate the commission, and display the commission can
easily be placed in a module. That module can then be called in the loop. Program 5-4
shows how this might be done. This program has a main module, which executes when
the program runs, and a showCommission module, which handles all of the steps
related to calculating and displaying a commission. Figure 5-5 shows a flowchart for
the main module, and Figure 5-6 shows a flowchart for the showCommission module.

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 179

Program 5-4

1 Module main()
2 // Local variable
3 Declare String keepGoing = "y"
4
5 // Calculate as many commissions
6 // as needed.
7 While keepGoing == "y"
8 // Display a salesperson's commission.
9 Call showCommission()
10
11 // Do it again?
12 Display "Do you want to calculate another"
13 Display "commission? (Enter y for yes.)"
14 Input keepGoing
15 End While
16 End Module
17
18 // The showCommission module gets the
19 // amount of sales and displays the
20 // commission.
21 Module show Commission()
22 // Local variables
23 Declare Real sales, commission
24
25 // Constant for the commission rate
26 Constant Real COMMISSION_RATE = 0.10
27
28 // Get the amount of sales.
29 Display "Enter the amount of sales."
30 Input sales
31
32 // Calculate the commission.
33 Set commission = sales * COMMISSION_RATE
34
35 // Display the commission
36 Display "The commission is $", commission
37 End Module

The output of this program is the same as that of Program 5-1

180 Chapter 5 Repetition Structures

The Do-While Loop
You have learned that the While loop is a pretest loop, which means it tests its condi-
tion before performing an iteration. The Do-While loop is a posttest loop. This means
it performs an iteration before testing its condition. As a result, the Do-While loop
always performs at least one iteration, even if its condition is false to begin with. The
logic of a Do-While loop is shown in Figure 5-7.

Set commission = sales
* COMMISSION_RATE

Display "Enter the
amount of sales."

Input sales

Display "The
commission is $",

commission

showCommission()

Return

Declare Real sales,
commission

Constant Real
COMMISSION_RATE = 0.10

Figure 5-6 The showCommission
module

The Do-While
Loop

VideoNote

Start

Declare String keepGoing
= "y"

keepGoing == "y"

False

End

showCommission()
True

Display "Do you want to
calculate another"

Input keepGoing

Display "commission?
(Enter y for yes)"

Figure 5-5 The main module of Program 5-4

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 181

In the flowchart, one or more statements are executed, and then a condition is tested.
If the condition is true, the program’s execution flows back to the point just above the
first statement in the body of the loop, and this process repeats. If the condition is false,
the program exits the loop.

Writing a Do-While Loop in Pseudocode
In pseudocode, we will use the Do-While statement to write a Do-While loop. Here is
the general format of the Do-While statement:

Do
statement
statement
etc.

While condition

In the general format, the statements that appear in the lines between the Do and the
While clauses are the body of the loop. The condition that appears after the While
clause is a Boolean expression. When the loop executes, the statements in the body of
the loop are executed, and then the condition is tested. If the condition is true, the loop
starts over and the statements in the body are executed again. If the condition is false,
however, the program exits the loop.

As shown in the general format, you should use the following conventions when you
write a Do-While statement:

● Make sure the Do clause and the While clause are aligned.
● Indent the statements in the body of the loop.

Condition
True

False

Statement(s)

Figure 5-7 The logic of a Do-While loop

⎫
⎬ These statements are the body of the loop. They are always

⎭ performed once, and then repeated while the condition is true.

182 Chapter 5 Repetition Structures

As shown in Program 5-5, the commission calculating program can be easily modified
to use a Do-While loop instead of a While loop. Notice that in this version of the pro-
gram, in line 3, we do not initialize the keepGoing variable with the string "y". It isn’t
necessary because the Do-While loop, in lines 7 through 15, will always execute at
least once. This means that the Input statement in line 14 will read a value into the
keepGoing variable before the condition is ever tested in line 15.

Figure 5-8 shows a flowchart for the main module.

Program 5-5

1 Module main()
2 // Local variable
3 Declare String keepGoing
4
5 // Calculate commissions as many
6 // times as needed.
7 Do
8 // Display a salesperson's commission.
9 Call showCommission()
10
11 // Do it again?
12 Display "Do you want to calculate another"
13 Display "commission? (Enter y for yes.)"
14 Input keepGoing
15 While keepGoing == "y"
16 End Module
17
18 // The showCommission module gets the
19 // amount of sales and displays the
20 // commission.
21 Module showCommission()
22 // Local variables
23 Declare Real sales, commission
24
25 // Constant for the commission rate
26 Constant Real COMMISSION_RATE = 0.10
27
28 // Get the amount of sales.
29 Display "Enter the amount of sales."
30 Input sales
31
32 // Calculate the commission.
33 Set commission = sales * COMMISSION_RATE
34
35 // Display the commission
36 Display "The commission is $", commission
37 End Module

The output of this program is the same as that of Program 5-1

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 183

Start

Declare String keepGoing

End

True

showCommission()

keepGoing == "y"

False

Display "Do you want to
calculate another"

Input keepGoing

Display "commission?
(Enter y for yes)"

Figure 5-8 Flowchart for the main module in Program 5-5

Although the Do-While loop is convenient to use in some circumstances, it is never
required. Any loop that can be written as a Do-While loop can also be written as a
While loop. As previously mentioned, some circumstances require that you initialize
data prior to executing a While loop, to ensure that it executes at least once.

184 Chapter 5 Repetition Structures

In the Spotlight:
Designing a Do-While Loop
Samantha owns an import business and she calculates the retail prices of her products
with the following formula:

Retail Price = Wholesale Cost × 2.5

She has asked you to design a program to do this calculation for each item that she re-
ceives in a shipment. You learn that each shipment contains various numbers of items,
so you decide to use a loop that calculates the price for one item, and then asks her
whether she has another item. The loop will iterate as long as she indicates that she has
another item. Program 5-6 shows the pseudocode for the program, and Figure 5-9
shows the flowchart.

Program 5-6

1 Module main()
2 // Local variable
3 Declare String doAnother
4
5 Do
6 // Calculate and display a retail price.
7 Call showRetail()
8
9 // Do this again?
10 Display "Do you have another item? (Enter y for yes.)"
11 Input doAnother
12 While doAnother == "y" OR doAnother == "Y"
13 End Module
14
15 // The showRetail module gets an item's wholesale cost
16 // from the user and displays its retail price.
17 Module showRetail()
18 // Local variables
19 Declare Real wholesale, retail
20
21 // Constant for the markup percentage
22 Constant Real MARKUP = 2.50
23
24 // Get the wholesale cost.
25 Display "Enter an item's wholesale cost."
26 Input wholesale
27
28 // Calculate the retail price.
29 Set retail = wholesale * MARKUP
30
31 // Display the retail price.
32 Display "The retail price is $", retail
33 End Module

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 185

Program Output (with Input Shown in Bold)

Enter an item's wholesale cost.
10.00 [Enter]
The retail price is $25
Do you have another item? (Enter y for yes.)
y [Enter]
Enter an item's wholesale cost.
15.00 [Enter]
The retail price is $37.50
Do you have another item? (Enter y for yes.)
y [Enter]
Enter an item's wholesale cost.
12.50 [Enter]
The retail price is $31.25
Do you have another item? (Enter y for yes.)
n [Enter]

End

Start

Display "Do you have
another item? (Enter y

for yes.)"

Declare String doAnother

doAnother == "y"
OR

doAnother == "Y"

True

False

Input doAnother

Display "Enter an item's
wholesale cost."

Input wholesale

Set retail =
wholesaleCost * MARKUP

Display "The retail price
is $", retail

showRetail()

Return

Declare Real wholesale, retail
Constant Real MARKUP = 2.5

showRetail()

Figure 5-9 Flowchart for Program 5-6

The Do-Until Loop
Both the While and the Do-While loops iterate as long as a condition is true. Some-
times, however, it is more convenient to write a loop that iterates until a condition is
true—that is, a loop that iterates as long as a condition is false, and then stops when
the condition becomes true.

For example, consider a machine in an automobile factory that paints cars as they
move down the assembly line. When there are no more cars to paint, the machine
stops. If you were programming such a machine, you would want to design a loop that
causes the machine to paint cars until there are no more cars on the assembly line.

A loop that iterates until a condition is true is known as a Do-Until loop. Figure 5-10
shows the general logic of a Do-Until loop.

This program has two modules: main, which executes when the program runs, and
showRetail, which calculates and displays an item’s retail price. In the main module,
a Do-While loop appears in lines 5 through 12. In line 7, the loop calls the
showRetail module. Then, in line 10 the user is prompted “Do you have another
item? (Enter y for yes.)” In line 11, the user’s input is stored in the doAnother variable.
In line 12, the following statement is the end of the Do-While loop:

While doAnother == "y" OR doAnother == "Y"

Notice that we are using the logical OR operator to test a compound Boolean expres-
sion. The expression on the left side of the OR operator will be true if doAnother is
equal to lowercase "y". The expression on the right side of the OR operator will be
true if doAnother is equal to uppercase "Y". If either of these subexpressions is true,
the loop will iterate. This is a simple way to make a case insensitive comparison,
which means that it does not matter whether the user enters uppercase or lowercase
letters.

186 Chapter 5 Repetition Structures

Condition
TrueFalse

Statement(s)

Figure 5-10 The logic of a Do-Until loop

5.2 Condition-Controlled Loops: While, Do-While, and Do-Until 187

Notice that the Do-Until loop is a posttest loop. First, one or more statements are ex-
ecuted, and then a condition is tested. If the condition is false, the program’s execution
flows back to the point just above the first statement in the body of the loop, and this
process repeats. If the condition is true, the program exits the loop.

Writing a Do-Until Loop in Pseudocode
In pseudocode, we will use the Do-Until statement to write a Do-Until loop. Here is
the general format of the Do-Until statement:

Do
statement
statement
etc.

Until condition

In the general format, the statements that appear in the lines between the Do and the
Until clauses are the body of the loop. The condition that appears after the While
clause is a Boolean expression. When the loop executes, the statements in the body of
the loop are executed, and then the condition is tested. If the condition is true, the pro-
gram exits the loop. If the condition is false, the loop starts over and the statements in
the body are executed again.

As shown in the general format, you should use the following conventions when you
write a Do–Until statement:

● Make sure the Do clause and the Until clause are aligned.
● Indent the statements in the body of the loop.

The pseudocode in Program 5-7 shows an example of the Do-Until loop. The loop
in lines 6 through 16 repeatedly asks the user to enter a password until the string
"prospero" is entered. Figure 5-11 shows a flowchart for the program.

Program 5-7

1 // Declare a variable to hold the password.
2 Declare String password
3
4 // Repeatedly ask the user to enter a password
5 // until the correct one is entered.
6 Do
7 // Prompt the user to enter the password.
8 Display "Enter the password."
9 Input password
10
11 // Display an error message if the wrong
12 // password was entered.
13 If password != "prospero" Then
14 Display "Sorry, try again."
15 End If
16 Until password == "prospero"
17
18 // Indicate that the password is confirmed.
19 Display "Password confirmed."

⎫
⎬ These statements are the body of the loop. They are always

⎭ performed once, and then repeated until the condition is true.

188 Chapter 5 Repetition Structures

Program Output (with Input Shown in Bold)

Enter the password.
ariel [Enter]
Sorry, try again.
Enter the password.
caliban [Enter]
Sorry, try again.
Enter the password.
prospero [Enter]
Password confirmed.

Truepassword ==
"prospero"

False

Declare String
password

Start

Display "Enter the
password."

Input password

password !=
"prospero"

Display "Sorry, try
again."

End

Display "Password
confirmed."

True

False

Figure 5-11 Flowchart for Program 5-7

5.3 Count-Controlled Loops and the For Statement 189

Deciding Which Loop to Use
In this section, we have introduced three different types of condition-controlled loop:
the While loop, the Do-While loop, and the Do-Until loop. When you write a pro-
gram that requires a condition-controlled loop, you will have to decide which loop
to use.

You want to use the While loop to repeat a task as long as a condition is true. The
While loop is ideal in situations where the condition might be false to start with, and
in such cases you do not want the loop to iterate at all. The pseudocode that you saw
in Program 5-2 is a good example.

The Do-While loop is also a candidate in situations where a task must be repeated as
long as a condition is true. It is the best choice, however, when you always want the
task to be performed at least once, regardless of whether the condition is true or false
to start with.

The Do-Until loop also performs a task at least once. It is the best choice, however,
when you want to perform a task until a condition is true. The Do-Until loop will re-
peat as long as its condition is false. When the condition is true, the Do-Until loop
stops.

Checkpoint

5.4 What is a loop iteration?

5.5 What is the difference between a pretest loop and a posttest loop?

5.6 Does the While loop test its condition before or after it performs an iteration?

5.7 Does the Do-While loop test its condition before or after it performs an
iteration?

5.8 What is an infinite loop?

5.9 What is the difference between a Do-While loop and a Do-Until loop?

5.3 Count-Controlled Loops
and the For Statement

CONCEPT: A count-controlled loop iterates a specific number of times. Although
you can write the logic of a condition-controlled loop so it iterates a
specific number of times, most languages provide a loop known as the
For loop, which is specifically designed as a count-controlled loop.

NOTE: Not all programming languages provide a Do-Until loop because you can
write a Do-While loop that is logically equivalent to any Do-Until loop.

190 Chapter 5 Repetition Structures

As mentioned at the beginning of this chapter, a count-controlled loop iterates a spe-
cific number of times. Count-controlled loops are commonly used in programs. For ex-
ample, suppose a business is open six days per week, and you are going to write a
program that calculates the total sales for a week. You will need a loop that iterates ex-
actly six times. Each time the loop iterates, it will prompt the user to enter the sales for
one day.

The way that a count-controlled loop works is simple: the loop keeps a count of the
number of times that it iterates, and when the count reaches a specified amount, the
loop stops. A count-controlled loop uses a variable known as a counter variable, or
simply counter, to store the number of iterations that it has performed. Using the
counter variable, the loop typically performs the following three actions: initialization,
test, and increment:

1. Initialization: Before the loop begins, the counter variable is initialized to a start-
ing value. The starting value that is used will depend on the situation.

2. Test: The loop tests the counter variable by comparing it to a maximum value. If
the counter variable is less than or equal to the maximum value, the loop iterates.
If the counter is greater than the maximum value, the program exits the loop.

3. Increment: To increment a variable means to increase its value. During each iter-
ation, the loop increments the counter variable by adding 1 to it.

Figure 5-12 shows the general logic of a count-controlled loop. The initialization, test,
and increment operations are indicated with the �, �, and � callouts.

counter <= maxValue

Statement(s)

Add 1 to counter

counter = startingValue

True

False

1

2

3

Initialization

Test

Increment

Figure 5-12 Logic of a count-controlled loop

5.3 Count-Controlled Loops and the For Statement 191

In the flowchart, assume that counter is an Integer variable. The first step is to set
counter to the appropriate starting value. Then, determine whether counter is less
than or equal to the maximum value. If this is true, the body of the loop executes. Oth-
erwise, the program exits the loop. Notice that in the body of the loop one or more
statements are executed, and then 1 is added to counter.

For example, look at the flowchart in Figure 5-13. First, an Integer variable named
counter is declared and initialized with the starting value 1. Then, the expression
counter <= 5 is tested. If this expression is true the message “Hello world” is dis-
played and 1 is added to counter. Otherwise, the program exits the loop. If you follow
the logic of this program you will see that the loop will iterate five times.

counter <= 5

Display "Hello world"

Add 1 to counter

Declare Integer
counter = 1

True

False

End

Start

Figure 5-13 A count-controlled loop

The For Statement
Count-controlled loops are so common in programming that most languages provide a
statement just for them. This is usually called the For statement. The For statement is
specifically designed to initialize, test, and increment a counter variable. Here is the
general format that we will use to write the For statement in pseudocode:

The For Statement

VideoNote

192 Chapter 5 Repetition Structures

For counterVariable = startingValue To maxValue
statement
statement
statement
etc.

End For

In the general format, counterVariable is the name of a variable that is used as a
counter, startingValue is the value that the counter will be initially set to, and
maxValue is the maximum value that the counter can contain. When the loop executes,
the following actions are performed:

1. The counterVariable is set to the startingValue.
2. The counterVariable is compared to the maxValue. If the counterVariable is

greater than maxValue, the loop stops. Otherwise:
a. The statements that appear in the body of the loop are executed.
b. The counterVariable is incremented.
c. The loop starts over again at Step 2.

An actual For loop is easy to understand, so let’s look at one. The pseudocode in
Program 5-8 uses a For loop to display “Hello world” five times. The flowchart in
Figure 5-14 shows the logic of the program.

Program 5-8

1 Declare Integer counter
2 Constant Integer MAX_VALUE = 5
3
4 For counter = 1 To MAX_VALUE
5 Display "Hello world"
6 End For

Program Output

Hello world
Hello world
Hello world
Hello world
Hello world

Line 1 declares an Integer variable that will be used as the counter variable. You do
not have to name the variable counter (you are free to name it anything you wish), but
in many cases that is an appropriate name. Line 2 declares a constant named
MAX_VALUE that will be used as the counter’s maximum value. The For loop begins in
line 4 with the statement For counter = 1 To MAX_VALUE. This specifies that the
counter variable will start with the value 1 and will end with the value 5. At the end
of each loop iteration, the counter variable will be incremented by 1, so this loop will
iterate five times. Each time it iterates, it displays “Hello world.”

Notice that the loop does not contain a statement to increment the counter variable.
This happens automatically in a For loop, at the end of each iteration. For that

⎫
⎬ These statements are the body of the loop.
⎪
⎭

5.3 Count-Controlled Loops and the For Statement 193

reason, you should be careful not to place a statement that modifies the counter vari-
able inside the body of a For loop. Doing so will usually disrupt the way the For loop
works.

counter <=
MAX_VALUE

False

End

Start

True
Display "Hello world" Add 1 to counter

Declare Integer counter

Constant Integer MAX_VALUE
= 5

Set counter = 1

Figure 5-14 Flowchart for Program 5-8

TIP : Program 5-8 has a constant, MAX_VALUE, that represents the counter vari-
able’s maximum value. The first line of the loop could have been written as follows,
to achieve the same result:

For counter = 1 To 5

Although creating the named constant is not necessary for this simple program,
creating named constants to represent important values is a good habit. Recall
from Chapter 2 that named constants make a program easier to read and easier to
maintain.

194 Chapter 5 Repetition Structures

Using the Counter Variable
in the Body of the Loop
In a count-controlled loop, the primary purpose of the counter variable is to store the
number of times that the loop has iterated. In some situations, it is also helpful to use
the counter variable in a calculation or other task within the body of the loop. For ex-
ample, suppose you need to write a program that displays the numbers 1 through 10
and their squares, in a table similar to the following:

Number Square
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

10 100

This can be accomplished by writing a count-controlled loop that iterates 10 times.
During the first iteration, the counter variable will be set to 1, during the second itera-
tion it will be set to 2, and so forth. Because the counter variable will take on the val-
ues 1 through 10 during the loop’s execution, you can use it in the calculation inside
the loop.

The flowchart in Figure 5-15 shows the logic of such a program. Notice that in the
body of the loop, the counter variable is used in the following calculation:

Set square = counter^2

This assigns the result of counter^2 to the square variable. After performing this
calculation, the contents of the counter variable and the square variable are dis-
played. Then, 1 is added to counter and the loop starts over again.

Program 5-9 shows the pseudocode for the program. Notice that the word Tab is used
in the Display statements in lines 8 and 18. This is simply a way of indicating in
pseudocode that we are indenting the screen output. For example, look at the follow-
ing statement, which appears in line 18:

Display counter, Tab, square

This statement displays the contents of the counter variable, indents (or “tabs over”),
and then displays the contents of the square variable. As a result, the numbers that are
displayed will be aligned in two columns. Most programming languages provide a way
to indent, or tab, screen output.

5.3 Count-Controlled Loops and the For Statement 195

counter <=
MAX_VALUE

False

End

True

Declare Integer counter,
square

Constant Integer
MAX_VALUE = 10

Set square = counter^2

Add 1 to counter

Display "Number",
Tab, "Square"

Display "---------------------"

Display counter, Tab,
square

Set counter = 1

Start

Figure 5-15 Displaying the numbers 1 through 10 and their squares

196 Chapter 5 Repetition Structures

Program 5-9

1 // Variables
2 Declare Integer counter, square
3
4 // Constant for the maximum value
5 Constant Integer MAX_VALUE = 10
6
7 // Display table headings.
8 Display "Number", Tab, "Square"
9 Display "-----------------------"
10
11 // Display the numbers 1 through 10 and
12 // their squares.
13 For counter = 1 To MAX_VALUE
14 // Calculate number squared.
15 Set square = counter^2
16
17 // Display number and number squared.
18 Display counter, Tab, square
19 End For

Program Output

Number Square

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Incrementing by Values Other Than 1
The amount by which the counter variable is incremented in a For loop is known as
the step amount. By default, the step amount is 1. Most languages provide a way to
change the step amount. This gives you the ability to increment the counter variable by
any value you wish.

In pseudocode, we will use the Step clause to specify a step value in a For loop. For
example, look at the following pseudocode:

For counter = 0 To 100 Step 10
Display counter

End For

5.3 Count-Controlled Loops and the For Statement 197

In this loop, the starting value of the counter variable is 0, and its ending value is 100.
The Step clause specifies a step value of 10, which means that 10 is added to the
counter variable at the end of each iteration. During the first iteration, counter is 0,
during the second iteration, counter is 10, during the third iteration, counter is 20,
and so forth.

The pseudocode in Program 5-10 gives another demonstration. The program displays
all of the odd numbers from 1 through 11.

Program 5-10

1 // Declare a counter variable
2 Declare Integer counter
3
4 // Constant for the maximum value
5 Constant Integer MAX_VALUE = 11
6
7 // Display the odd numbers from 1 through 11.
8 For counter = 1 To MAX_VALUE Step 2
9 Display counter
10 End For

Program Output

1
3
5
7
9
11

In the Spotlight:
Designing a Count-Controlled
Loop with the For Statement
Your friend Amanda just inherited a European sports car from her uncle. Amanda
lives in the United States, and she is afraid she will get a speeding ticket because the
car’s speedometer works in kilometers per hour. She has asked you to write a pro-
gram that displays a table of speeds in kilometers per hour with their values con-
verted to miles per hour. The formula for converting kilometers per hour to miles per
hour is:

MPH = KPH × 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers
per hour.

198 Chapter 5 Repetition Structures

The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values con-
verted to miles per hour. The table should look something like this:

KPH MPH
60 37.284
70 43.498
80 49.712
etc. . . .
130 80.782

After thinking about this table of values, you decide that you will write a For loop that
uses a counter variable to hold the kilometer-per-hour speeds. The counter’s starting
value will be 60, its ending value will be 130, and a step value of 10 will be used. Inside
the loop you will use the counter variable to calculate a speed in miles-per-hour.
Program 5-11 shows the pseudocode for the program, and Figure 5-16 shows a flowchart.

Program 5-11

1 // Declare variables to hold speeds in MPH and KPH.
2 Declare Real mph
3 Declare Integer kph
4
5 // Display the table headings.
6 Display "KPH", Tab, "MPH"
7 Display "-----------------------"
8
9 // Display the speeds.
10 For kph = 60 To 130 Step 10
11 // Calculate the miles-per-hour.
12 Set mph = kph * 0.6214
13
14 // Display KPH and MPH.
15 Display kph, Tab, mph
16 End For

Program Output

KPH MPH

60 37.284
70 43.498
80 49.712
90 55.926
100 62.14
110 68.354
120 74.568
130 80.782

Notice that a variable named kph is used as the counter. Until now we have used the
name counter for our counter variables. In this program, however, kph is a better
name for the counter because it will hold speeds in kilometers-per-hour.

5.3 Count-Controlled Loops and the For Statement 199

kph <= 130

False

End

Start

True

Add 10 to kph

Declare Real mph
Declare Integer kph

Set kph = 60

Set mph = kph * 0.6214

Display kph,Tab, mph

Display "KPH", Tab, "MPH"

Display "-----------------------"

Figure 5-16 Flowchart for Program 5-11

200 Chapter 5 Repetition Structures

Counting Backward by Decrementing
the Counter Variable
Although the counter variable is usually incremented in a count-controlled loop, you
can alternatively decrement the counter variable. To decrement a variable means to de-
crease its value. In a For statement, you specify a negative step value to decrement the
counter variable. For example, look at the following loop:

For counter = 10 To 1 Step -1
Display counter

End For

In this loop, the starting value of the counter variable is 10, and its ending value is 1.
The step value is –1, which means that 1 is subtracted from counter at the end of each
iteration. During the first iteration, counter is 10; during the second iteration,
counter is 9; and so forth. If this were an actual program, it would display the num-
bers 10, 9, 8, and so forth, down to 1.

Letting the User Control the Number of Iterations
In many cases, the programmer knows the exact number of iterations that a loop must
perform. For example, recall Program 5-9, which displays a table showing the numbers 1
through 10 and their squares. When the pseudocode was written, the programmer
knew that the loop had to iterate 10 times. A constant named MAX_VALUE was initial-
ized with the value 10, and the loop was written as follows:

For counter = 1 To MAX_VALUE

As a result, the loop iterates exactly 10 times. Sometimes, however, the programmer
needs to let the user decide the number of times that a loop should iterate. For exam-
ple, what if you want Program 5-9 to be a bit more versatile by allowing the user to
specify the maximum value displayed by the loop? The pseudocode in Program 5-12
shows how you can accomplish this.

Program 5-12

1 // Variables
2 Declare Integer counter, square, upperLimit
3
4 // Get the upper limit.
5 Display "This program displays numbers, starting at 1,"
6 Display "and their squares. How high should I go?"
7 Input upperLimit
8
9 // Display table headings.
10 Display "Number", Tab, "Square"
11 Display "-----------------------"
12
13 // Display the numbers and their squares.
14 For counter = 1 To upperLimit
15 // Calculate number squared.
16 Set square = counter^2
17
18 // Display number and number squared.
19 Display counter, Tab, square
20 End For

5.3 Count-Controlled Loops and the For Statement 201

Program Output

This program displays numbers, starting at 1,
and their squares. How high should I go?
5 [Enter]
Number Square

1 1
2 4
3 9
4 16
5 25

Lines 5 and 6 ask the user how high the numbers in the table should go, and the state-
ment in line 7 stores the user’s input in the upperLimit variable. Then, the For loop
uses the upperLimit variable as the counter’s ending value:

For counter = 1 To upperLimit

As a result, the counter variable starts with 1, and ends with the value in upperLimit.
In addition to specifying the counter’s ending value, you can also specify its starting
value. The pseudocode in Program 5-13 shows an example. In this program, the user
specifies both the starting value and the ending value of the numbers displayed in the
table. Notice that in line 20 the For loop uses variables to specify both the starting and
ending values of the counter variable.

Program 5-13

1 // Variables
2 Declare Integer counter, square,
3 lowerLimit, upperLimit
4
5 // Get the lower limit.
6 Display "This program displays numbers and"
7 Display "their squares. What number should"
8 Display "I start with?"
9 Input lowerLimit
10
11 // Get the upper limit.
12 Display "What number should I end with?"
13 Input upperLimit
14
15 // Display table headings.
16 Display "Number", Tab, "Square"
17 Display "-----------------------"
18
19 // Display the numbers and their squares.
20 For counter = lowerLimit To upperLimit
21 // Calculate number squared.
22 Set square = counter^2
23
24 // Display number and number squared.
25 Display counter, Tab, square
26 End For

202 Chapter 5 Repetition Structures

Program Output

This program displays numbers and
their squares. What number should
I start with?
3 [Enter]
What number should I end with?
7 [Enter]
Number Square

3 9
4 16
5 25
6 36
7 49

Designing a Count-Controlled While Loop
In most situations, it is best to use the For statement to write a count-controlled loop.
Most languages, however, make it possible to use any looping mechanism to create a
count-controlled loop. For example, you can create a count-controlled While loop, a
count-controlled Do-While loop, or a count-controlled Do-Until loop. Regardless of
the type of mechanism that you use, all count-controlled loops perform an initializa-
tion, test, and increment operation on a counter variable.

In pseudocode, you can use the following general format to write a count-controlled
While loop:

➀ Declare Integer counter = startingValue Initialize a counter variable
to the starting value.

➁ While counter <= maxValue Compare the counter to the
maximum value.

statement
statement
statement

➂ Set counter = counter + 1 Add 1 to the counter variable during
each iteration.

End While

The ➀, ➁, and ➂ callouts show where the initialization, test, and increment actions are
performed.

➀ shows the declaration of an Integer variable that will be used as the counter. The
variable is initialized with the appropriate starting value.

➁ shows where the While loop tests the expression counter <= maxValue. In this
general format, maxValue is the maximum value that the counter variable can be
set to.

➂ shows where 1 is added to the counter variable. In a While loop, the counter
variable will not automatically be incremented. You have to explicitly write a
statement that performs this action. It’s important that you understand how this
statement works, so let’s take a closer look at it:

Set counter = counter + 1

5.3 Count-Controlled Loops and the For Statement 203

This is how the statement would be executed by the computer: First, the computer
would get the value of the expression on the right side of the = operator, which is
counter + 1. Then, that value would be assigned to the counter variable. The effect
of the statement is that 1 is added to the counter variable.

WARNING! If you forget to increment the counter variable in a count-controlled
While loop, the loop will iterate an infinite number of times.

The pseudocode in Program 5-14 shows an example of a count-controlled While loop.
This program follows the same logic that you previously saw in Figure 5-13, and dis-
plays “Hello world” five times. Figure 5-17 points out where the counter variable’s ini-
tialization, test, and increment occur in the pseudocode.

Program 5-14

1 // Declare and initialize a counter variable.
2 Declare Integer counter = 1
3
4 // Constant for the maximum value
5 Constant Integer MAX_VALUE = 5
6
7 While counter <= MAX_VALUE
8 Display "Hello world"
9 Set counter = counter + 1
10 End While

Program Output

Hello world
Hello world
Hello world
Hello world
Hello world

// Declare and initialize a counter variable.
Declare Integer counter = 1

// Constant for the maximum value
Constant Integer MAX_VALUE = 5

While counter <= MAX_VALUE
 Display "Hello world"
 Set counter = counter + 1
End While

1Initialization

Increment 3

Test2

Figure 5-17 The initialization, test, and increment of the counter variable

The pseudocode in Program 5-15 shows another example. This program produces the
same output that was produced by Program 5-9: the numbers 1 through 10 and their
squares. The flowchart that you previously saw in Figure 5-15 shows the logic of this
program.

204 Chapter 5 Repetition Structures

Program 5-15

1 // Variables
2 Declare Integer counter = 1
3 Declare Integer square
4
5 // Constant for the maximum value
6 Constant Integer MAX_VALUE = 10
7
8 // Display table headings.
9 Display "Number", Tab, "Square"
10 Display "-----------------------"
11
12 // Display the numbers 1 through 10 and
13 // their squares.
14 While counter <= MAX_VALUE
15 // Calculate the square of a number.
16 Set square = counter^2
17
18 // Display the number and its square.
19 Display counter, Tab, square
20
21 // Increment counter.
22 Set counter = counter + 1
23 End While

Program Output

Number Square

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Incrementing by Values Other Than 1

In Programs 5-14 and 5-15 the counter variable is incremented by 1 during each loop
iteration, with a statement such as this:

Set counter = counter + 1

This statement can be easily modified to increment the counter variable by values other
than 1. For example, you could add 2 to the counter variable with the following state-
ment:

Set counter = counter + 2

5.3 Count-Controlled Loops and the For Statement 205

The pseudocode in Program 5-16 demonstrates how you can use this statement in a count-
controlled While loop. The program displays all of the odd numbers from 1 through 11.

Program 5-16

1 // Declare a counter variable
2 Declare Integer counter = 1
3
4 // Constant for the maximum value
5 Constant Integer MAX_VALUE = 11
6
7 // Display the odd numbers from 1
8 // through 11.
9 While counter <= MAX_VALUE
10 Display counter
11 Set counter = counter + 2
12 End While

Program Output

1
3
5
7
9
11

Counting Backward by Decrementing

Previously you saw how a negative step value can be used to decrement the counter
variable in a For statement. In a count-controlled While loop, you decrement the
counter variable with a statement such as the following:

Set counter = counter – 1

This statement subtracts 1 from the counter variable. If the counter variable is set to
the value 5 before this statement executes, it will be set to 4 after the statement exe-
cutes. The pseudocode in Program 5-17 demonstrates how you can use this statement
in a While loop. The program counts backward from 10 down to 1.

Program 5-17

1 // Declare a counter variable
2 Declare Integer counter = 10
3
4 // Constant for the minimum value
5 Constant Integer MIN_VALUE = 1
6
7 // Display a count-down.
8 Display "And the countdown begins..."

206 Chapter 5 Repetition Structures

9 While counter >= MIN_VALUE
10 Display counter
11 Set counter = counter - 1
12 End While
13 Display "Blast off!"

Program Output

And the countdown begins...
10
9
8
7
6
5
4
3
2
1
Blast off!

Let’s take a closer look at this program. Notice that line 11 subtracts 1 from the
counter variable. Because we are counting backward, we have to reverse many parts
of the logic. For example, in line 2 the counter variable must be initialized with the
value 10 instead of 1. This is because 10 is the counter’s starting value in this program.
Also, in line 5 we create a constant to represent the counter’s minimum value (which is
1) instead of the maximum value. Because we are counting down, we want the loop to
stop when it reaches 1. Finally, notice that we are using the >= relational operator in
line 9. In this program we want the loop to iterate as long as the counter is greater than
or equal to 1. When the counter becomes less than 1, the loop should stop.

Checkpoint

5.10 What is a counter variable?

5.11 What three actions do count-controlled loops typically perform using the
counter variable?

5.12 When you increment a variable, what are you doing? When you decrement a
variable, what are you doing?

5.13 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer number = 5
Set number = number + 1
Display number

5.14 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter
For counter = 1 To 5

Display counter
End For

5.4 Calculating a Running Total 207

5.15 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter
For counter = 0 To 500 Step 100
Display counter

End For

5.16 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter = 1
Constant Integer MAX = 8
While counter <= MAX

Display counter
Set counter = counter + 1

End While

5.17 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter = 1
Constant Integer MAX = 7
While counter <= MAX

Display counter
Set counter = counter + 2

End While

5.18 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter
Constant Integer MIN = 1
For counter = 5 To MIN Step -1

Display counter
End For

5.4 Calculating a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each itera-
tion of a loop. The variable used to keep the running total is called an
accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For
example, suppose you are writing a program that calculates a business’s total sales for
a week. The program would read the sales for each day as input and calculate the total
of those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

● A loop that reads each number in the series.
● A variable that accumulates the total of the numbers as they are read.

208 Chapter 5 Repetition Structures

The variable that is used to accumulate the total of the numbers is called an
accumulator. It is often said that the loop keeps a running total because it accumulates
the total as it reads each number in the series. Figure 5-18 shows the general logic of a
loop that calculates a running total.

Set accumulator to 0

Is there another
number to read?

Read the next number
Add the number to the

accumulator

Yes
(True)

No
(False)

Figure 5-18 General logic for calculating a running total

When the loop finishes, the accumulator will contain the total of the numbers that
were read by the loop. Notice that the first step in the flowchart is to set the accumula-
tor variable to 0. This is a critical step. Each time the loop reads a number, it adds it to
the accumulator. If the accumulator starts with any value other than 0, it will not con-
tain the correct total when the loop finishes.

Let’s look at the design of a program that calculates a running total. The pseudocode
shown in Program 5-18 allows the user to enter five numbers, and it displays the total
of the numbers entered.

Program 5-18

1 // Declare a variable to hold each number
2 // entered by the user.
3 Declare Integer number
4
5 // Declare an accumulator variable,
6 // initialized with 0.
7 Declare Integer total = 0
8
9 // Declare a counter variable for the loop.
10 Declare Integer counter

5.4 Calculating a Running Total 209

11
12 // Explain what we are doing.
13 Display "This program calculates the"
14 Display "total of five numbers."
15
16 // Get five numbers and accumulate them.
17 For counter = 1 To 5
18 Display "Enter a number."
19 Input number
20 Set total = total + number
21 End For
22
23 // Display the total of the numbers.
24 Display "The total is ", total

Program Output (with Input Shown in Bold)

This program calculates the
total of five numbers.
Enter a number.
2 [Enter]
Enter a number.
4 [Enter]
Enter a number.
6 [Enter]
Enter a number.
8 [Enter]
Enter a number.
10 [Enter]
The total is 30

First, let’s look at the variable declarations. The number variable, declared in line 3,
will be used to hold a number entered by the user. The total variable, declared in line 7,
is the accumulator. Notice that it is initialized with the value 0. The counter variable,
declared in line 10, will be used as a counter by the loop.

The For loop, in lines 17 through 21, does the work of getting the numbers from the
user and calculating their total. Line 18 prompts the user to enter a number, and line 19
gets the user’s input and stores it in the number variable. Then, the following statement
in line 20 adds number to total:

Set total = total + number

After this statement executes, the value in the number variable will be added to the value
in the total variable. When the loop finishes, the total variable will hold the sum of
all the numbers that were added to it. This value is displayed in line 24. Figure 5-19
shows a flowchart for the Program 5-18.

210 Chapter 5 Repetition Structures

counter <= 5
True

Set counter to 1

False
Display "Enter a number."

Input number

Set total = total + number

Set counter = counter + 1

Display "The total is ",
total

End

Declare Integer number
Declare Integer total = 0
Declare Integer counter

Start

Display "This program
calculates the"

Display "total of
five numbers."

Figure 5-19 Flowchart for Program 5-18

5.5 Sentinels 211

Checkpoint

5.19 A program that calculates the total of a series of numbers typically has what
two elements?

5.20 What is an accumulator?

5.21 Should an accumulator be initialized to any specific value? Why or why not?

5.22 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer number1 = 10, number2 = 5
Set number1 = number1 + number2
Display number1
Display number2

5.23 Look at the following pseudocode. If it were a real program, what would it
display?

Declare Integer counter, total = 0
For counter = 1 To 5

Set total = total + counter
End For
Display total

5.5 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Consider the following scenario: You are designing a program that will use a loop to
process a long list of values. At the time you are designing the program, you do not
know the number of values that will be in the list. In fact, the number of values in the
list could be different each time the program is executed. What is the best way to de-
sign such a loop? Here are some techniques that you have seen already in this chapter,
along with the disadvantages of using them when processing a long list of values:

● Simply ask the user, at the end of each loop iteration, whether there is another
value to process. If the list of values is long, however, asking this question at the
end of each loop iteration might make the program cumbersome for the user.

● Ask the user at the beginning of the program how many items the list contains.
This might also inconvenience the user, however. If the list is very long, and the
user does not know the number of items in the list, it will require the user to
count them.

When processing a long list of values with a loop, perhaps a better technique is to use
a sentinel. A sentinel is a special value that marks the end of a list of items. When a program

212 Chapter 5 Repetition Structures

reads the sentinel value, it knows it has reached the end of the list, so the loop termi-
nates. For example, suppose a doctor wants a program to calculate the average weight
of all her patients. The program might work like this: A loop prompts the user to enter
either a patient’s weight, or 0 if there are no more weights. When the program reads 0
as a weight, it interprets this as a signal that there are no more weights. The loop ends
and the program displays the average weight.

A sentinel value must be unique enough that it will not be mistaken as a regular value
in the list. In the example cited above, the doctor (or her medical assistant) enters 0 to
signal the end of the list of weights. Because no patient’s weight will be 0, this is a good
value to use as a sentinel.

In the Spotlight:
Using a Sentinel
The county tax office calculates the annual taxes on property using the following
formula:

Property Tax = Property Value × 0.0065

Every day, a clerk in the tax office gets a list of properties and has to calculate the tax
for each property on the list. You have been asked to design a program that the clerk
can use to perform these calculations.

In your interview with the tax clerk, you learn that each property is assigned a lot
number, and all lot numbers are 1 or greater. You decide to write a loop that uses the
number 0 as a sentinel value. During each loop iteration, the program will ask the clerk
to enter either a property’s lot number, or 0 to end. Program 5-19 shows the
pseudocode for the program, and Figure 5-20 shows a flowchart.

Program 5-19

1 Module main()
2 // Local variable for the lot number
3 Declare Integer lotNumber
4
5 // Get the first lot number.
6 Display "Enter the property's lot number"
7 Display "(or enter 0 to end)."
8 Input lotNumber
9
10 // Continue processing as long as the user
11 // does not enter lot number 0.
12 While lotNumber ! = 0
13 // Show the tax for the property.
14 Call showTax()
15

5.5 Sentinels 213

16 // Get the next lot number.
17 Display "Enter the lot number for the"
18 Display "next property (or 0 to end)."
19 Input lotNumber
20 End While
21 End Module
22
23 // The showTax module gets a property's
24 // value and displays its tax.
25 Module showTax()
26 // Local variables
27 Declare Real propertyValue, tax
28
29 // Constant for the tax factor.
30 Constant Real TAX_FACTOR = 0.0065
31
32 // Get the property's value.
33 Display "Enter the property's value."
34 Input propertyValue
35
36 // Calculate the property's tax.
37 Set tax = propertyValue * TAX_FACTOR
38
39 // Display the tax.
40 Display "The property's tax is $", tax
41 End Module

Program Output (with Input Shown in Bold)

Enter the property's lot number
(or enter 0 to end).
417 [Enter]
Enter the property's value.
100000 [Enter]
The property's tax is $650
Enter the lot number for the
next property (or 0 to end).
692 [Enter]
Enter the property's value.
60000 [Enter]
The property's tax is $390
Enter the lot number for the
next property (or 0 to end).
0 [Enter]

214 Chapter 5 Repetition Structures

lotNumber != 0 True

False

End

Declare Integer lotNumber

Start

showTax()

Display "Enter the
property's value."

Return

Declare Real propertyValue,
tax

Constant Real TAX_FACTOR = 0.0065

showTax()

Input propertyValue

Set tax = propertyValue *
TAX_FACTOR

Display "The property's
tax is $", tax

Display "Enter the property’s
lot number"

Display "(or enter 0 to
end)."

Input lotNumber

Display "Enter the lot number
for the"

Display "next property
(or 0 to end)."

Input lotNumber

Figure 5-20 Flowchart for Program 5-19

Checkpoint

5.24 Why should you take care to choose a unique value as a sentinel?

5.25 What is a sentinel?

5.6 Nested Loops 215

5.6 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

A nested loop is a loop that is inside another loop. A clock is a good example of
something that works like a nested loop. The second hand, minute hand, and hour
hand all spin around the face of the clock. The hour hand, however, only makes 1
revolution for every 12 of the minute hand’s revolutions. And it takes 60 revolutions
of the second hand for the minute hand to make 1 revolution. This means that for
every complete revolution of the hour hand, the second hand has revolved 720 times.
Here is pseudocode with a loop that partially simulates a digital clock. It displays the
seconds from 0 to 59:

Declare Integer seconds
For seconds = 0 To 59

Display seconds
End For

We can add a minutes variable and nest the loop above inside another loop that cycles
through 60 minutes:

Declare Integer minutes, seconds
For minutes = 0 To 59

For seconds = 0 To 59
Display minutes, ":", seconds

End For
End For

To make the simulated clock complete, another variable and loop can be added to
count the hours:

Declare Integer hours, minutes, seconds
For hours = 0 To 23

For minutes = 0 To 59
For seconds = 0 To 59

Display hours, ":", minutes, ":", seconds
End For

End For
End For

If this were a real program, its output would be:

0:0:0
0:0:1
0:0:2

(The program will count through each second of 24 hours.)

23:59:59

The innermost loop will iterate 60 times for each iteration of the middle loop. The mid-
dle loop will iterate 60 times for each iteration of the outermost loop. When the outer-
most loop has iterated 24 times, the middle loop will have iterated 1,440 times and the
innermost loop will have iterated 86,400 times! Figure 5-21 shows a flowchart for the
complete clock simulation program previously shown.

216 Chapter 5 Repetition Structures

End

Start

Declare Integer hours,
minutes, seconds

seconds <= 59

Set seconds = 0

True

Display hours, ":",
minutes, ":", seconds

Set seconds =
seconds + 1

minutes <= 59

Set minutes = 0

True

hours <= 23

Set hours = 0

True

Set minutes =
minutes + 1

False

Set hours =
hours + 1

False

False

Figure 5-21 Flowchart for a clock simulator

The simulated clock example brings up a few points about nested loops:

● An inner loop goes through all of its iterations for every single iteration of an
outer loop.

● Inner loops complete their iterations faster than outer loops.
● To get the total number of iterations of a nested loop, multiply the number of

iterations of all the loops.

Program 5-20 shows another example in pseudocode. It is a program that a teacher
might use to get the average of each student's test scores. The statement in line 13 gets
the number of students, and the statement in line 17 gets the number of test scores per
student. The For loop that begins in line 20 iterates once for each student. The nested
inner loop, in lines 27 through 31, iterates once for each test score.

Program 5-20

1 // This program averages test scores. It asks the user for the
2 // number of students and the number of test scores per student.
3 Declare Integer numStudents
4 Declare Integer numTestScores
5 Declare Integer total
6 Declare Integer student
7 Declare Integer testNum
8 Declare Real score
9 Declare Real average
10
11 // Get the number of students.
12 Display "How many students do you have?"
13 Input numStudents
14
15 // Get the number of test scores per student.
16 Display "How many test scores per student?"
17 Input numTestScores
18
19 // Determine each student's average test score.
20 For student = 1 To numStudents
21 // Initialize an accumulator for test scores.
22 Set total = 0
23
24 // Get a student's test scores.
25 Display "Student number ", student
26 Display "-----------------"
27 For testNum = 1 To numTestScores
28 Display "Enter test number ", testNum, ":"
29 Input score
30 Set total = total + score
31 End For
32
33 // Calculate the average test score for this student.
34 Set average = total / numTestScores
35
36 // Display the average.
37 Display "The average for student ", student, " is ", average
38 Display
39 End For

5.6 Nested Loops 217

218 Chapter 5 Repetition Structures

Program Output (with Input Shown in Bold)

How many students do you have?
3 [Enter]
How many test scores per student?
3 [Enter]
Student number 1

Enter test number 1:
100 [Enter]
Enter test number 2:
95 [Enter]
Enter test number 3:
90 [Enter]
The average for student number 1 is 95.0

Student number 2

Enter test number 1:
80 [Enter]
Enter test number 2:
81 [Enter]
Enter test number 3:
82 [Enter]
The average for student number 2 is 81.0

Student number 3

Enter test number 1:
75 [Enter]
Enter test number 2:
85 [Enter]
Enter test number 3:
80 [Enter]
The average for student number 3 is 80.0

Review Questions

Multiple Choice

1. A __________-controlled loop uses a true/false condition to control the number
of times that it repeats.

a. Boolean
b. condition
c. decision
d. count

Review Questions 219

2. A __________-controlled loop repeats a specific number of times.

a. Boolean
b. condition
c. decision
d. count

3. Each repetition of a loop is known as a(n) __________.

a. cycle
b. revolution
c. orbit
d. iteration

4. The While loop is a __________ type of loop.

a. pretest
b. posttest
c. prequalified
d. post iterative

5. The Do-While loop is a __________ type of loop.

a. pretest
b. posttest
c. prequalified
d. post iterative

6. The For loop is a __________ type of loop.

a. pretest
b. posttest
c. prequalified
d. post iterative

7. A(n) __________ loop has no way of ending and repeats until the program is
interrupted.

a. indeterminate
b. interminable
c. infinite
d. timeless

8. A __________ loop always executes at least once.

a. pretest
b. posttest
c. condition-controlled
d. count-controlled

9. A(n) __________ variable keeps a running total.

a. sentinel
b. sum
c. total
d. accumulator

220 Chapter 5 Repetition Structures

10. A(n) __________ is a special value that signals when there are no more items from
a list of items to be processed. This value cannot be mistaken as an item from the
list.

a. sentinel
b. flag
c. signal
d. accumulator

True or False

1. A condition-controlled loop always repeats a specific number of times.

2. The While loop is a pretest loop.

3. The Do-While loop is a pretest loop.

4. You should not write code that modifies the contents of the counter variable in the
body of a For loop.

5. You cannot display the contents of the counter variable in the body of a loop.

6. It is not possible to increment a counter variable by any value other than 1.

7. The following statement decrements the variable x: Set x = x - 1.

8. It is not necessary to initialize accumulator variables.

9. In a nested loop, the inner loop goes through all of its iterations for every single
iteration of the outer loop.

10. To calculate the total number of iterations of a nested loop, add the number of
iterations of all the loops.

Short Answer

1. Why should you indent the statements in the body of a loop?

2. Describe the difference between pretest loops and posttest loops.

3. What is a condition-controlled loop?

4. What is a count-controlled loop?

5. What three actions do count-controlled loops typically perform using the counter
variable?

6. What is an infinite loop? Write the code for an infinite loop.

7. A For loop looks like what other loop in a flowchart?

8. Why is it critical that accumulator variables are properly initialized?

9. What is the advantage of using a sentinel?

10. Why must the value chosen for use as a sentinel be carefully selected?

Algorithm Workbench

1. Design a While loop that lets the user enter a number. The number should be
multiplied by 10, and the result stored in a variable named product. The loop
should iterate as long as product contains a value less than 100.

2. Design a Do-While loop that asks the user to enter two numbers. The numbers
should be added and the sum displayed. The loop should ask the user whether he
or she wishes to perform the operation again. If so, the loop should repeat; other-
wise it should terminate.

3. Design a For loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

4. Design a loop that asks the user to enter a number. The loop should iterate 10
times and keep a running total of the numbers entered.

5. Design a For loop that calculates the total of the following series of numbers:

6. Design a nested loop that displays 10 rows of # characters. There should be
15 # characters in each row.

7. Convert the While loop in the following code to a Do-While loop:
Declare Integer x = 1
While x > 0

Display "Enter a number."
Input x

End While

8. Convert the Do-While loop in the following code to a While loop:
Declare String sure
Do

Display "Are you sure you want to quit?"
Input sure

While sure != "Y" AND sure != "y"

9. Convert the following While loop to a For loop:
Declare Integer count = 0
While count < 50

Display "The count is ", count
Set count = count + 1

End While

10. Convert the following For loop to a While loop:
Declare Integer count
For count = 1 To 50

Display count
End For

1
30

2
29

3
28

30
1

+ + + ...

Review Questions 221

222 Chapter 5 Repetition Structures

Debugging Exercises
1. Find the error in the following pseudocode.

Declare Boolean finished = False
Declare Integer value, cube

While NOT finished
Display "Enter a value to be cubed."
Input value;
Set cube = value^3
Display value, " cubed is ", cube

End While

2. The programmer intended the following pseudocode to display the numbers 1
through 60, and then display the message "Time’s up!" It will not function as in-
tended, however. Find the error.
Declare Integer counter = 1
Const Integer TIME_LIMIT = 60

While counter < TIME_LIMIT
Display counter
Set counter = counter + 1

End While
Display "Time's up!"

3. The programmer intended the following pseudocode to get five sets of two num-
bers each, calculate the sum of each set, and calculate the sum of all the numbers
entered. It will not function as intended, however. Find the error.
// This program calculates the sum of five sets of two numbers.
Declare Integer number, sum, total
Declare Integer sets, numbers

Constant Integer MAX_SETS = 5
Constant Integer MAX_NUMBERS = 2

Set sum = 0;
Set total = 0;

For sets = 1 To MAX_NUMBERS
For numbers = 1 To MAX_SETS

Display "Enter number ", numbers, " of set ", sets, "."
Input number;
Set sum = sum + number

End For
Display "The sum of set ", sets, " is ", sum "."
Set total = total + sum
Set sum = 0

End For
Display "The total of all the sets is ", total, "."

Programming Exercises
1. Bug Collector

A bug collector collects bugs every day for seven days. Design a program that
keeps a running total of the number of bugs collected during the seven days. The
loop should ask for the number of bugs collected for each day, and when the loop
is finished, the program should display the total number of bugs collected.

The Bug Collector
Problem

VideoNote

2. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Design a pro-
gram that uses a loop to display the number of calories burned after 10, 15, 20, 25,
and 30 minutes.

3. Budget Analysis

Design a program that asks the user to enter the amount that he or she has bud-
geted for a month. A loop should then prompt the user to enter each of his or her
expenses for the month, and keep a running total. When the loop finishes, the pro-
gram should display the amount that the user is over or under budget.

4. Sum of Numbers

Design a program with a loop that asks the user to enter a series of positive num-
bers. The user should enter a negative number to signal the end of the series. After
all the positive numbers have been entered, the program should display their sum.

5. Tuition Increase

At one college, the tuition for a full-time student is $6,000 per semester. It has been
announced that the tuition will increase by 2 percent each year for the next five
years. Design a program with a loop that displays the projected semester tuition
amount for the next five years.

6. Distance Traveled

The distance a vehicle travels can be calculated as follows:

Distance = Speed × Time

For example, if a train travels 40 miles per hour for three hours, the distance trav-
eled is 120 miles. Design a program that asks the user for the speed of a vehicle (in
miles per hour) and how many hours it has traveled. It should then use a loop to
display the distance the vehicle has traveled for each hour of that time period. Here
is an example of the output:

What is the speed of the vehicle in mph? 40 [Enter]

How many hours has it traveled? 3 [Enter]

Hour Distance Traveled
——————————————————————————————
1 40
2 80
3 120

7. Average Rainfall

Design a program that uses nested loops to collect data and calculate the average
rainfall over a period of years. The program should first ask for the number of
years. The outer loop will iterate once for each year. The inner loop will iterate
twelve times, once for each month. Each iteration of the inner loop will ask the
user for the inches of rainfall for that month. After all iterations, the program
should display the number of months, the total inches of rainfall, and the average
rainfall per month for the entire period.

Programming Exercises 223

8. Celsius to Fahrenheit Table

Design a program that displays a table of the Celsius temperatures 0 through 20
and their Fahrenheit equivalents. The formula for converting a temperature from
Celsius to Fahrenheit is

where F is the Fahrenheit temperature and C is the Celsius temperature. Your
program must use a loop to display the table.

9. Pennies for Pay

Design a program that calculates the amount of money a person would earn over a
period of time if his or her salary is one penny the first day, two pennies the second
day, and continues to double each day. The program should ask the user for the
number of days. Display a table showing what the salary was for each day, and
then show the total pay at the end of the period. The output should be displayed in
a dollar amount, not the number of pennies.

10. Largest and Smallest

Design a program with a loop that lets the user enter a series of numbers. The user
should enter –99 to signal the end of the series. After all the numbers have been en-
tered, the program should display the largest and smallest numbers entered.

11. First and Last

Design a program that asks the user for a series of names (in no particular order).
After the final person’s name has been entered, the program should display the
name that is first alphabetically and the name that is last alphabetically. For exam-
ple, if the user enters the names Kristin, Joel, Adam, Beth, Zeb, and Chris, the pro-
gram would display Adam and Zeb.

12. Calculating the Factorial of a Number

In mathematics, the notation n! represents the factorial of the nonnegative integer
n. The factorial of n is the product of all the nonnegative integers from 1 up
through n. For example:

7! = 1 × 2 × 3 × 4 × 5 × 6 × 7 = 5,040

and

4! = 1 × 2 × 3 × 4 = 24

Design a program that asks the user to enter a nonnegative integer and then dis-
plays the factorial of that number.

F C= +9
5

32

224 Chapter 5 Repetition Structures

TOPICS

6.1 Introduction to Functions: Generating
Random Numbers

6.2 Writing Your Own Functions

6.3 More Library Functions

Functions

C
H

A
P

T
E

R

6

225

6.1 Introduction to Functions:
Generating Random Numbers

CONCEPT: A function is a module that returns a value back to the part of the pro-
gram that called it. Most programming languages provide a library of
prewritten functions that perform commonly needed tasks. In these li-
braries you typically find a function that generates random numbers.

In Chapter 3 you learned that a module is a group of statements that exist within a pro-
gram for the purpose of performing a specific task. When you need the module to per-
form its task, you call the module. This causes the program to execute the statement
inside the module.

A function is a special type of module. It is like a regular module in the following ways:

● A function is a group of statements that perform a specific task.
● When you want to execute a function, you call it.

When a function finishes, however, it returns a value back to the part of the program
that called it. The value that is returned from a function can be used like any other
value: it can be assigned to a variable, displayed on the screen, used in a mathematical
expression (if it is a number), and so on.

Library Functions
Most programming languages come with a library of functions that have already been
written. These functions, known as library functions, are built into the programming
language, and you can call them any time you need them. Library functions make a

226 Chapter 6 Functions

programmer’s job easier because they perform many of the tasks that programmers
commonly need to perform. As you will see in this chapter, there are library functions
to manipulate numbers and perform various math operations, to convert data from
one type to another, to manipulate strings, and more.

The code for a language’s library functions is usually stored in special files. These files
are normally placed on your computer when you install a compiler or interpreter.
When you call a library function in one of your programs, the compiler or interpreter
automatically causes the function to execute, without requiring the function’s code to
appear in your program. This way, you never have to see the code for a library function—
you only need to know the purpose of the library function, the arguments that you
must pass to it, and what type of data it returns.

Because you do not see the internal workings of library functions, many programmers
think of them as black boxes. The term black box is used to describe any mechanism
that accepts input, performs some operation that cannot be seen on the input, and pro-
duces output. Figure 6-1 illustrates this idea.

Library
Function

Input Output

Figure 6-1 A library function viewed as a black box

This section demonstrates how functions work by looking at a library function that
generates random numbers. Most programming languages provide such a function,
and we will look at some interesting programs that can be written with it. In the next
section you will learn to write your own functions. The last section in this chapter
comes back to the topic of library functions and looks at several other useful functions
that programming languages commonly provide.

Using the random Function
Most programming languages provide a library function that generates random num-
bers. This chapter uses the random function for this purpose in the pseudocode. Ran-
dom numbers are useful for lots of different programming tasks. The following are just
a few examples:

● Random numbers are commonly used in games. For example, computer games
that let the player roll dice use random numbers to represent the values of the
dice. Programs that show cards being drawn from a shuffled deck use random
numbers to represent the face values of the cards.

● Random numbers are useful in simulation programs. In some simulations, the
computer must randomly decide how a person, animal, insect, or other living
being will behave. Formulas can be constructed in which a random number is
used to determine various actions and events that take place in the program.

● Random numbers are useful in statistical programs that must randomly select
data for analysis.

● Random numbers are commonly used in computer security to encrypt sensitive
data.

6.1 Introduction to Functions: Generating Random Numbers 227

The following pseudocode statement shows an example of how you might call the
random function. Assume that number is an Integer variable.

Set number = random(1, 100)

The part of the statement that reads random(1, 100) is a call to the random function.
Notice that two arguments appear inside the parentheses: 1 and 100. These arguments
tell the function to give a random number in the range of 1 through 100. Figure 6-2
illustrates this part of the statement.

Notice that the call to the random function appears on the right side of an = operator.
When the function is called, it will generate a random number in the range of 1
through 100 and then return that number. The number that is returned will be assigned
to the number variable, as shown in Figure 6-3.

Figure 6-2 A statement that calls the
random function

Figure 6-3 The random function
returns a value

Program 6-1 shows the pseudocode for a complete program that uses the random
function. The statement in line 2 generates a random number in the range of 1 through
10 and assigns it to the number variable. (The program output shows that the number
7 was generated, but this value is arbitrary. If this were an actual program, it could dis-
play any number between 1 and 10.)

Program 6-1

1 Declare Integer number
2 Set number = random(1, 10)
3 Display number

Program Output

7

Set number = random(1, 100)

Arguments

Function call

Set number = random(1, 100)

A random number in the range of
1 through 100 will be assigned to

the number variable.

Some number

NOTE: The way that you set up a program to work with library functions differs
among programming languages. In some languages you don’t have to do anything
special to call library functions. That’s the approach we take in our pseudocode. In
other languages, however, you may have to write a statement near the top of a pro-
gram indicating that it will access a particular library function.

The pseudocode in Program 6-2 shows another example. This program uses a For
loop that iterates five times. Inside the loop, the statement in line 9 calls the random
function to generate a random number in the range of 1 through 100.

228 Chapter 6 Functions

Program 6-2

1 // Declare variables
2 Declare Integer number, counter
3
4 // The following loop displays
5 // five random numbers.
6 For counter = 1 To 5
7 // Get a random number in the range of
8 // 1 through 100 and assign it to number.
9 Set number = random(1, 100)
10
11 // Display the number.
12 Display number
13 End For

Program Output

89
7
16
41
12

The pseudocode in both Programs 6-1 and 6-2 calls the random function and assigns
its return value to the number variable. If you just want to display a random number,
it is not necessary to assign the random number to a variable. You can send the ran-
dom function’s return value directly to the Display statement, as shown here:

Display random(1, 10)

When this statement executes, the random function is called. The function generates a
random number in the range of 1 through 10. That value is returned and then sent to
the Display statement. As a result, a random number in the range of 1 through 10 will
be displayed. Figure 6-4 illustrates this.

The pseudocode in Program 6-3 shows how you could simplify Program 6-2. This
program also displays five random numbers, but this program does not use a variable
to hold those numbers. The random function’s return value is sent directly to the
Display statement in line 4.

Figure 6-4 Displaying a random number

A random number in the range of
1 through 10 will be displayed.

Display random(1, 10)

Some number

Program 6-3

1 // Counter variable
2 Declare Integer counter
3

6.1 Introduction to Functions: Generating Random Numbers 229

4 // This loop displays five random numbers.
5 For counter = 1 To 5
6 Display random(1, 100)
7 End For

Program Output

32
79
6
12
98

In the Spotlight:
Using Random Numbers
Dr. Kimura teaches an introductory statistics class, and has asked you to write a pro-
gram that he can use in class to simulate the rolling of dice. The program should ran-
domly generate two numbers in the range of 1 through 6 and display them. In your
interview with Dr. Kimura, you learn that he would like to use the program to simulate
several rolls of the dice, one after the other. You decide to write a loop that simulates
one roll of the dice, and then asks the user whether another roll should be performed.
As long as the user answers “y” for yes, the loop will repeat. Program 6-4 shows the
pseudocode for the program, and Figure 6-5 shows the flowchart.

Program 6-4

1 // Declare a variable to control the
2 // loop iterations.
3 Declare String again
4
5 Do
6 // Roll the dice.
7 Display "Rolling the dice..."
8 Display "Their values are:"
9 Display random(1, 6)
10 Display random(1, 6)
11
12 // Do this again?
13 Display "Want to roll them again? (y = yes)"
14 Input again
15 While again == "y" OR again == "Y"

Program Output with Input Shown in Bold

Rolling the dice...
Their values are:
2
6
Want to roll them again? (y = yes)

230 Chapter 6 Functions

y [Enter]
Rolling the dice...
Their values are:
4
1
Want to roll them again? (y = yes)
y [Enter]
Rolling the dice...
Their values are:
3
3
Want to roll them again? (y = yes)
n [Enter]

again == "y" OR
again == "Y"

Declare String again

Display "Rolling the dice..."

Display "Their values are:"

Display random(1, 6)

Display random(1, 6)

Display "Want to roll
them again? (y = yes)"

Input again

True

False

End

Start

Figure 6-5 Flowchart for Program 6-4

6.1 Introduction to Functions: Generating Random Numbers 231

The random function returns an integer value, so you can write a call to the function
anywhere that you can write an integer value. You have already seen examples where
the function’s return value is assigned to a variable and where the function’s return
value is sent to the Display statement. To further illustrate the point, here is a state-
ment that uses the random function in a math expression:

Set x = random(1, 10) * 2

In this statement, a random number in the range of 1 through 10 is generated and then
multiplied by 2. The result is assigned to the x variable. You can also test the return
value of the function with an If-Then statement, as demonstrated in the following In
the Spotlight section.

In the Spotlight:
Using Random Numbers to
Represent Other Values
Dr. Kimura was so happy with the dice rolling simulator that you wrote for him, he has
asked you to write one more program. He would like a program that he can use to sim-
ulate ten coin flips, one after the other. Each time the program simulates a coin flip, it
should randomly display either “Heads” or “Tails.”

You decide that you can simulate the flipping of a coin by randomly generating a num-
ber in the range of 1 through 2. You will design a decision structure that displays
“Heads” if the random number is 1, or “Tails” otherwise. Program 6-5 shows the
pseudocode for the program, and Figure 6-6 shows the flowchart.

Program 6-5

1 // Declare a counter variable.
2 Declare Integer counter
3
4 // Constant for the number of flips.
5 Constant Integer NUM_FLIPS = 10
6
7 For counter = 1 To NUM_FLIPS
8 // Simulate the coin flip.
9 If random(1, 2) == 1 Then
10 Display "Heads"
11 Else
12 Display "Tails"
13 End If
14 End For

Program Output

Tails
Tails
Heads
Tails

232 Chapter 6 Functions

Heads
Heads
Heads
Tails
Heads
Tails

False

True

TrueFalse

Start

counter <=
NUM_FLIPS

Declare Integer counter
Constant Integer
NUM_FLIPS = 10

Display "Heads"

random(1, 2)
== 1

Display "Tails"

Set counter = counter + 1

Set counter = 1

End

Figure 6-6 Flowchart for Program 6-5

6.2 Writing Your Own Functions 233

6.2 Writing Your Own Functions

CONCEPT: Most programming languages allow you to write your own functions.
When you write a function, you are essentially writing a module that
can send a value back to the part of the program that called it.

Recall from Chapter 3 that when you create a module you write its definition. Func-
tions are defined in a manner similar to modules. The following are the important
characteristics of a function definition.

● The first line of a function definition, the function header, specifies the data type
of the value that is returned from the function, the name of the function, and any
parameter variables used by the function to accept arguments.

● Following the function header is the function body, which is comprised of one or
more statements that are executed when the function is called.

● One of the statements in the function body must be a Return statement. A
Return statement specifies the value that is returned from the function when the
function ends.

Here is the general format that we will use for writing functions in pseudocode:

Function DataType FunctionName(ParameterList)
statement
statement
etc.
Return value

End Function

The first line in this pseudocode, the function header, begins with the word Function
and is followed by these items:

● DataType is the data type of the value that the function returns. For example, if
the function returns an integer, the word Integer will appear here. If the func-
tion returns a real number, the word Real will appear here. Likewise, if the func-
tion returns a string, the word String will appear here.

Checkpoint

6.1 How does a function differ from a module?

6.2 What is a library function?

6.3 Why are library functions like “black boxes”?

6.4 In pseudocode, what does the following statement do?
Set x = random(1, 100)

6.5 In pseudocode, what does the following statement do?
Display random(1, 20)

A function must have a Return statement. This causes a
value to be sent back to the part of the program that called
the function.

Writing a Function

VideoNote

234 Chapter 6 Functions

Figure 6-7 Parts of the function header

● FunctionName is the name of the function. As with modules, you should give a
function a name that describes what the function does. In most languages you fol-
low the same rules for naming functions that you follow for naming modules and
variables.

● An optional parameter list appears inside a set of parentheses. If the function
does not accept arguments, then an empty set of parentheses will appear.

On the line after the function header, one or more statements will appear. These state-
ments, the function’s body, are performed any time the function is executed. One of
the statements in the body must be a Return statement, which takes the following
form:

Return value

The value that follows the word Return is the value that the function will send back
to the part of the program that called the function. This can be any value, variable, or
expression that has a value (such as a math expression). The value that is returned
must be of the same data type as that specified in the function header. Otherwise, an
error will occur.

The last line of the definition, after the body, reads End Function. This line marks the
end of the function definition.

Here is an example of a function written in pseudocode:

Function Integer sum(Integer num1, Integer num2)
Declare Integer result
Set result = num1 + num2
Return result

End Function

Figure 6-7 illustrates the various parts of the function header. Notice that the func-
tion returns an Integer, the function’s name is sum, and the function has two Integer
parameters, named num1 and num2.

The purpose of this function is to accept two integer values as arguments and return
their sum. Let’s look at the body of the function to see how it works. The first statement,

Function Integer sum(Integer num1, Integer num2)
 Declare Integer result
 Set result = num1 + num2
 Return result
End Function

This function returns
an Integer

The name of this
function is sum

num1 and num2 are
parameters

6.2 Writing Your Own Functions 235

a variable declaration, declares a local Integer variable named result. The next
statement assigns the value of num1 + num2 to the result variable. Next, the Return
statement executes, which causes the function to end execution and sends the value in
the result variable back to the part of the program that called the function.

Program 6-6 shows a complete pseudocode program that uses the function.

Program 6-6

1 Module main()
2 // Local variables
3 Declare Integer firstAge, secondAge, total
4
5 // Get the user's age and the user's
6 // best friend's age.
7 Display "Enter your age."
8 Input firstAge
9 Display "Enter your best friend's age."
10 Input secondAge
11
12 // Get the sum of both ages.
13 Set total = sum(firstAge, secondAge)
14
15 // Display the sum.
16 Display "Together you are ", total, " years old."
17 End Module
18
19 // The sum function accepts two Integer arguments and
20 // returns the sum of those arguments as an Integer.
21 Function Integer sum(Integer num1, Integer num2)
22 Declare Integer result
23 Set result = num1 + num2
24 Return result
25 End Function

Program Output (with Input Shown in Bold)

Enter your age.
22 [Enter]
Enter your best friend's age.
24 [Enter]
Together you are 46 years old.

In the main module, the program gets two integer values from the user and stores
them in the firstAge and secondAge variables. The statement in line 13 calls the
sum function, passing firstAge and secondAge as arguments. The value that is
returned from the sum function is assigned to the total variable. In this case, the
function will return 46. Figure 6-8 shows how the arguments are passed into the
function, and how a value is returned back from the function.

236 Chapter 6 Functions

Figure 6-9 Flowchart for the sum function

Flowcharting a Function
When creating a flowchart for a program that has functions, you draw a separate
flowchart for each function. In a flowchart for a function, the starting terminal sym-
bol usually shows the name of the function, along with any parameters that the func-
tion has. The ending terminal symbol reads Return, followed by the value or
expression that is being returned. Figure 6-9 shows the flowchart for the sum function
in Program 6-6.

Figure 6-8 Arguments are passed to the sum function and a value is returned

Making the Most of the Return Statement
Look again at the sum function presented in Program 6-6:

Function Integer sum(Integer num1, Integer num2)
Declare Integer result
Set result = num1 + num2
Return result

End Function

Notice that three things happen inside this function: (1) a local variable, result, is de-
clared, (2) the value of the expression num1 + num2 is assigned to the result variable,
and (3) the value of the result variable is returned.

Function Integer sum(Integer num1, Integer num2)
 Declare Integer result
 Set result = num1 + num2
 Return result
End Function

Set total = sum(firstAge, secondAge)

22

46

24

sum(Integer num1,
Integer num2)

Declare Integer result

Return result

Set result =
num1 + num2

6.2 Writing Your Own Functions 237

NOTE: In most programming languages you can pass as many arguments into a
function as you need, but you can return only one value from a function.

Although this function does what it sets out to do, it can be simplified. Because the
Return statement can return the value of an expression, you can eliminate the result
variable and rewrite the function as:

Function Integer sum(Integer num1, Integer num2)
Return num1 + num2

End Function

This version of the function does not store the value of num1 + num2 in a variable.
Instead, it takes advantage of the fact that the Return statement can return the value of
an expression. This version of the function does the same thing as the previous version,
but in only one step.

How to Use Functions
Most programming languages allow you to create both modules and functions. Func-
tions provide many of the same benefits as modules: they simplify code, reduce dupli-
cation, enhance your ability to test code, increase the speed of development, and ease
the facilitation of teamwork.

Because functions return a value, they can be useful in specific situations. For example,
you can use a function to prompt the user for input, and then it can return the value en-
tered by the user. Suppose you’ve been asked to design a program that calculates the
sale price of an item in a retail business. To do that, the program would need to get the
item’s regular price from the user. Here is a function you could define for that purpose:

Function Real getRegularPrice()
// Local variable to hold the price.
Declare Real price

// Get the regular price.
Display "Enter the item's regular price."
Input price

// Return the regular price.
Return price

End Function

Then, elsewhere in the program, you could call that function, as shown here:

// Get the item's regular price.
Set regularPrice = getRegularPrice()

When this statement executes, the getRegularPrice function is called, which gets a
value from the user and returns it. That value is then assigned to the regularPrice
variable.

You can also use functions to simplify complex mathematical expressions. For exam-
ple, calculating the sale price of an item seems like it would be a simple task: you cal-
culate the discount and subtract it from the regular price. In a program, however, a

238 Chapter 6 Functions

statement that performs this calculation is not that straightforward, as shown in the
following example. (Assume DISCOUNT_PERCENTAGE is a global constant that is de-
fined in the program, and it specifies the percentage of the discount.)

Set salePrice = regularPrice –
(regularPrice * DISCOUNT_PERCENTAGE)

This statement isn’t easy to understand because it performs so many steps: it calculates
the discount amount, subtracts that value from regularPrice, and assigns the result
to salePrice. You could simplify the statement by breaking out part of the math ex-
pression and placing it in a function. Here is a function named discount that accepts
an item’s price as an argument and returns the amount of the discount:

Function Real discount(Real price)
Return price * DISCOUNT_PERCENTAGE

End Function

You could then call the function in your calculation:

Set salePrice = regularPrice – discount(regularPrice)

This statement is easier to read than the one previously shown, and it is clearer that
the discount is being subtracted from the regular price. The pseudocode in Program 6-7
shows the complete sale price calculating program using the functions just
described.

Program 6-7

1 // Global constant for the discount percentage.
2 Constant Real DISCOUNT_PERCENTAGE = 0.20
3
4 // The main module is the program's starting point.
5 Module main()
6 // Local variables to hold regular and sale prices.
7 Declare Real regularPrice, salePrice
8
9 // Get the item's regular price.
10 Set regularPrice = getRegularPrice()
11
12 // Calculate the sale price.
13 Set salePrice = regularPrice - discount(regularPrice)
14
15 // Display the sale price.
16 Display "The sale price is $", salePrice
17 End Module
18
19 // The getRegularPrice function prompts the
20 // user to enter an item's regular price and
21 // returns that value as a Real.
22 Function Real getRegularPrice()
23 // Local variable to hold the price.
24 Declare Real price
25

6.2 Writing Your Own Functions 239

IPO Chart for the getRegularPrice Function

Input Processing Output

None Prompts the user to enter an
item’s regular price

The item’s regular
price, as a Real

IPO Chart for the discount Function

Input Processing Output

An item’s
regular price

Calculates an item’s discount by
multiplying the regular price by
the global constant
DISCOUNT_PERCENTAGE

The item’s discount,
as a Real

Figure 6-10 IPO charts for the getRegularPrice and discount functions

26 // Get the regular price.
27 Display "Enter the item's regular price."
28 Input price
29
30 // Return the regular price.
31 Return price
32 End Function
33
34 // The discount function accepts an item's price
35 // as an argument and returns the amount of the
36 // discount specified by DISCOUNT_PERCENTAGE.
37 Function Real discount(Real price)
38 Return price * DISCOUNT_PERCENTAGE
39 End Function

Program Output (with Input Shown in Bold)

Enter the item's regular price.
100.00 [Enter]
The sale price is $80

Using IPO Charts
An IPO chart is a simple but effective tool that programmers sometimes use while
designing functions. IPO stands for input, processing, and output, and an IPO chart
describes the input, processing, and output of a function. These items are usually
laid out in columns: the input column shows a description of the data that is passed
to the function as arguments, the processing column shows a description of the
process that the function performs, and the output column describes the data that is
returned from the function. For example, Figure 6-10 shows IPO charts for the
getRegularPrice and discount functions that you saw in Program 6-7.

240 Chapter 6 Functions

In the Spotlight:
Modularizing with Functions
Hal owns a business named Make Your Own Music, which sells guitars, drums, ban-
jos, synthesizers, and many other musical instruments. Hal’s sales staff works strictly
on commission. At the end of the month, each salesperson’s commission is calculated
according to Table 6-1.

Notice that the IPO charts provide only brief descriptions of a function’s input, pro-
cessing, and output, but do not show the specific steps taken in a function. In many
cases, however, IPO charts include sufficient information so that they can be used in-
stead of a flowchart. The decision of whether to use an IPO chart, a flowchart, or both
is often left to the programmer’s personal preference.

Table 6-1 Sales Commission Rates

Sales This Month Commission Rate

Less than $10,000.00 10%

$10,000.00–14,999.99 12%

$15,000.00–17,999.99 14%

$18,000.00–21,999.99 16%

$22,000 or more 18%

For example, a salesperson with $16,000 in monthly sales will earn a 14 percent com-
mission ($2,240). Another salesperson with $20,000 in monthly sales will earn a
16 percent commission ($3,200). A person with $30,000 in sales will earn an 18 percent
commission ($5,400).

Because the staff gets paid once per month, Hal allows each employee to take up
to $2,000 per month in advance. When sales commissions are calculated, the amount
of each employee’s advanced pay is subtracted from the commission. If any salesper-
son’s commission is less than the amount of his or her advance, the salesperson must
reimburse Hal for the difference. To calculate a salesperson’s monthly pay, Hal uses
the following formula:

Pay = Sales × Commission rate – Advanced pay

Hal has asked you to write a program that makes this calculation for him. The follow-
ing general algorithm outlines the steps the program must take:

1. Get the salesperson’s monthly sales.
2. Get the amount of advanced pay.
3. Use the amount of monthly sales to determine the commission rate.
4. Calculate the salesperson’s pay using the formula previously shown. If the

amount is negative, indicate that the salesperson must reimburse the company.

6.2 Writing Your Own Functions 241

Program 6-8 shows the pseudocode for the program, which is modularized with
numerous functions. Rather than presenting the entire program at once, let’s first
examine the main module and then each function separately. Here is the main
module:

Program 6-8 Commission rate program: main module

1 Module main()
2 // Local variables
3 Declare Real sales, commissionRate, advancedPay
4
5 // Get the amount of sales.
6 Set sales = getSales()
7
8 // Get the amount of advanced pay.
9 Set advancedPay = getAdvancedPay()
10
11 // Determine the commission rate.
12 Set commissionRate = determineCommissionRate(sales)
13
14 // Calculate the pay.
15 Set pay = sales * commissionRate - advancedPay
16
17 // Display the amount of pay.
18 Display "The pay is $", pay
19
20 // Determine whether the pay is negative.
21 If pay < 0 Then
22 Display "The salesperson must reimburse"
23 Display "the company."
24 End If
25 End Module
26

Line 3 declares the variables to hold the sales, the commission rate, and the amount of
advanced pay. Line 6 calls the getSales function, which gets the amount of sales from
the user and returns that value. The value that is returned from the function is assigned
to the sales variable. Line 9 calls the getAdvancedPay function, which gets the
amount of advanced pay from the user and returns that value. The value that is re-
turned from the function is assigned to the advancedPay variable.

Line 12 calls the determineCommissionRate function, passing sales as an argu-
ment. This function returns the rate of commission for the amount of sales. That
value is assigned to the commissionRate variable. Line 15 calculates the amount of
pay, and then line 18 displays that amount. The If-Then statement in lines 21
through 24 determines whether the pay is negative, and if so, displays a message in-
dicating that the salesperson must reimburse the company. Figure 6-11 shows a flow-
chart for the main module.

242 Chapter 6 Functions

main()

Set sales =
getSales()

Declare Real sales,
commissionRate,

advancedPay

Set advancedPay =
getAdvancedPay()

Set commissionRate =
determineCommissionRate

(sales)

Set pay = sales *
commissionRate -

advancedPay

A
End

Display "The pay is $",
pay

Display "The salesperson
must reimburse"

pay < 0

A

True

False

Display "the company."

Figure 6-11 Flowchart for the main module

The getSales function definition is next.

Program 6-8 Commission rate program (continued):
getSales function

27 // The getSales function gets a salesperson's
28 // monthly sales from the user and returns
29 // that value as a Real.
30 Function Real getSales()
31 // Local variable to hold the monthly sales.
32 Declare Real monthlySales
33
34 // Get the amount of monthly sales.
35 Display "Enter the salesperson's monthly sales."
36 Input monthlySales
37
38 // Return the amount of monthly sales.
39 Return monthlySales
40 End Function
41

6.2 Writing Your Own Functions 243

Next is the definition of the getAdvancedPay function.

Program 6-8 Commission rate program (continued):
getAdvancedPay function

42 // The getAdvancedPay function gets the amount of
43 // advanced pay given to the salesperson and
44 // returns that amount as a Real.
45 Function Real getAdvancedPay()
46 // Local variable to hold the advanced pay.
47 Declare Real advanced
48
49 // Get the amount of advanced pay.
50 Display "Enter the amount of advanced pay, or"
51 Display "0 if no advanced pay was given."
52 Input advanced
53
54 // Return the advanced pay.
55 Return advanced
56 End Function
57

The purpose of the getSales function is to prompt the user to enter the amount of
sales for a salesperson and return that amount. A local variable named monthlySales
is declared in line 32. Line 35 tells the user to enter the sales, and line 36 gets the user’s
input and stores it in the local monthlySales variable. Line 39 returns the amount in
the monthlySales variable. Figure 6-12 shows a flowchart for this function.

getSales()

Declare Real
monthlySales

Return
monthlySales

Display "Enter the sales-
person's monthly sales."

Input monthlySales

Figure 6-12 Flowchart for the getSales function

244 Chapter 6 Functions

Defining the determineCommissionRate function comes next.

Program 6-8 Commission rate program (continued):
determineCommissionRate function

58 // The determineCommissionRate function accepts the
59 // amount of sales as an argument and returns the
60 // commission rate as a Real.
61 Function Real determineCommissionRate(Real sales)
62 // Local variable to hold commission rate.
63 Declare Real rate
64
65 // Determine the commission rate.
66 If sales < 10000.00 Then
67 Set rate = 0.10
68 Else If sales >= 10000.00 AND sales <= 14999.99 Then
69 Set rate = 0.12
70 Else If sales >= 15000.00 AND sales <= 17999.99 Then
71 Set rate = 0.14
72 Else If sales >= 18000.00 AND sales <= 21999.99 Then
73 Set rate = 0.16

The purpose of the getAdvancedPay function is to prompt the user to enter the
amount of advanced pay for a salesperson and return that amount. A local variable
named advanced is declared in line 47. Lines 50 and 51 tell the user to enter the
amount of advanced pay (or 0 if none was given), and line 52 gets the user’s input and
stores it in the local advanced variable. Line 55 returns the amount in the advanced
variable. Figure 6-13 shows a flowchart for this function.

getAdvancedPay()

Declare Real advanced

Return advanced

Input advanced

Display "Enter the amount
of advanced pay, or"

Display "0 if no
advanced pay was given."

Figure 6-13 Flowchart for the getAdvancedPay function

6.2 Writing Your Own Functions 245

74 Else
75 Set rate = 0.18
76 End If
77
78 // Return the commission rate.
79 Return rate
80 End Function

The determineCommissionRate function accepts the amount of sales as an argu-
ment, and it returns the applicable commission rate for that amount of sales. Line 63
declares a local variable named rate that will hold the commission rate. The If-
Then-Else If statement in lines 66 through 76 tests the sales parameter and assigns
the correct value to the local rate variable. Line 79 returns the value in the local rate
variable. Figure 6-14 shows a flowchart for this function.

Set rate = 0.10

Set rate = 0.12

Set rate = 0.14

Set rate = 0.16Set rate = 0.18

Declare Real rate

TrueFalse sales <
10000.00

TrueFalse sales >=
10000.00 AND

sales <=
14999.99

TrueFalse

TrueFalse

sales >=
15000.00 AND

sales <=
17999.99

sales >=
18000.00 AND

sales <=
21999.99

Return rate

Determine
CommissionRate

(Real sales)

Figure 6-14 Flowchart for the determineCommissionRate function

246 Chapter 6 Functions

Returning Strings
So far you’ve seen examples of functions that return numbers. Most programming lan-
guages also allow you to write functions that return strings. For example, the following
pseudocode function prompts the user to enter his or her name, and then returns the
string that the user entered.

Function String getName()
// Local variable to hold the user's name.
Declare String name

// Get the user's name.
Display "Enter your name."
Input name

// Return the name.
Return name

End Function

Returning Boolean Values
Most languages also allow you to write Boolean functions, which return either
True or False. You can use a Boolean function to test a condition, and then return
either True or False to indicate whether the condition exists. Boolean functions

Program Output (with Input Shown in Bold)

Enter the salesperson's monthly sales.
14650.00 [Enter]
Enter the amount of advanced pay, or
0 if no advanced pay was given.
1000.00 [Enter]
The pay is $758.00

Program Output (with Input Shown in Bold)

Enter the salesperson's monthly sales.
9000.00 [Enter]
Enter the amount of advanced pay, or
0 if no advanced pay was given.
0 [Enter]
The pay is $900.00

Program Output (with Input Shown in Bold)

Enter the salesperson's monthly sales.
12000.00 [Enter]
Enter the amount of advanced pay, or
0 if no advanced pay was given.
2000.00 [Enter]
The pay is $-560
The salesperson must reimburse
the company.

6.2 Writing Your Own Functions 247

are useful for simplifying complex conditions that are tested in decision and repetition
structures.

For example, suppose you are designing a program that will ask the user to enter a
number, and then determine whether that number is even or odd. The following
pseudocode shows how you can make that determination. Assume number is an
Integer variable containing the number entered by the user.

If number MOD 2 == 0 Then
Display "The number is even."

Else
Display "The number is odd."

End If

The meaning of the Boolean expression being tested by this If-Then statement isn’t
clear, so let’s take a closer look at it:

number MOD 2 == 0

This expression uses the MOD operator, which was introduced in Chapter 2. Recall that
the MOD operator divides two integers and returns the remainder of the division. So, this
pseudocode is saying, “If the remainder of number divided by 2 is equal to 0, then dis-
play a message indicating the number is even, or else display a message indicating the
number is odd.”

Because dividing an even number by 2 will always give a remainder of 0, this logic will
work. The pseudocode would be easier to understand, however, if you could somehow
rewrite it to say, “If the number is even, then display a message indicating it is even, or
else display a message indicating it is odd.” As it turns out, this can be done with a
Boolean function. In this example, you could design a Boolean function named isEven
that accepts a number as an argument and returns True if the number is even, or False
otherwise. The following is the pseudocode for such a function.

Function Boolean isEven(Integer number)
// Local variable to hold True or False.
Declare Boolean status

// Determine whether number is even. If it is, set
// status to True. Otherwise, set status to False.
If number MOD 2 == 0 Then

Set status = True
Else

Set status = False
End If

// Return the value in the status variable.
Return status

End Function

Then you can rewrite the If-Then statement so it calls the isEven function to deter-
mine whether number is even.

If isEven(number) Then
Display "The number is even."

Else
Display "The number is odd."

End If

248 Chapter 6 Functions

Not only is this logic easier to understand, but now you have a function that you can
call in the program any time you need to test a number to determine whether it is
even.

Checkpoint

6.6 What is the purpose of the Return statement in a function?

6.7 Look at the following pseudocode function definition:

Function Integer doSomething(Integer number)
Return number * 2

End Function

a. What is the name of the function?

b. What type of data does the function return?

c. Given the function definition, what will the following statement display?

Display doSomething (10)

6.8 What is an IPO chart?

6.9 What is a Boolean function?

6.3 More Library Functions

NOTE: The library functions that we present in this chapter are generic versions of
the ones that you will find in most programming languages. In this book, the names
of the functions, the arguments that they accept, and their behavior might differ
slightly from the way they work in actual programming languages.

Mathematical Functions
Most programming languages provide several mathematical library functions. These
functions typically accept one or more values as arguments, perform a mathematical
operation using the arguments, and return the result. For example, two common math-
ematical functions are sqrt and pow. Let’s take a closer look at each.

The sqrt Function

The sqrt function accepts an argument and returns the square root of the argument.
Here is an example of how it is used:

Set result = sqrt(16)

This statement calls the sqrt function, passing 16 as an argument. The function re-
turns the square root of 16, which is then assigned to the result variable. The
pseudocode in Program 6-9 demonstrates the sqrt function.

6.3 More Library Functions 249

Program 6-9

1 // Variable declarations
2 Declare Integer number
3 Declare Real squareRoot
4
5 // Get a number.
6 Display "Enter a number."
7 Input number
8
9 // Calculate and display its square root.
10 Set squareRoot = sqrt(number)
11 Display "The square root of that number is ", squareRoot

Program Output (with Input Shown in Bold)

Enter a number.
25 [Enter]
The square root of that number is 5

The pseudocode in Program 6-10 finds the hypotenuse of a right triangle. The program
uses the following formula, which you might recall from geometry class:

In the formula, c is the length of the hypotenuse, and a and b are the lengths of the
other sides of the triangle.

Program 6-10

1 // Variable declarations
2 Declare Real a, b, c
3
4 // Get the length of side A.
5 Display "Enter the length of side A."
6 Input a
7
8 // Get the length of side B.
9 Display "Enter the length of side B."
10 Input b
11
12 // Calculate the length of the hypotenuse.
13 Set c = sqrt(a^2 + b^2)
14
15 // Display the length of the hypotenuse.
16 Display "The length of the hypotenuse is ", c

Program Output (with Input Shown in Bold)

Enter the length of side A.
5.0 [Enter]
Enter the length of side B.
12.0 [Enter]
The length of the hypotenuse is 13

c a b= +2 2

250 Chapter 6 Functions

Take a closer look at line 13:

Set c = sqrt(a^2 + b^2)

The statement works like this: The value of the expression a^2 + b^2 is calculated,
and that value is passed as an argument to the sqrt function. The sqrt function re-
turns the square root of the argument, which is then assigned to the variable c.

The pow Function

Another common mathematical function is the pow function. The purpose of the pow
function is to raise a number to a power. In a nutshell, it does the same thing that we
have been using the ^ operator for. Some programming languages, however, do not
have an operator that raises a number to a power. Instead, they use a function such as
pow. Here is an example of how the pow function is used:

Set area = pow(4, 2)

This statement calls the pow function, passing 4 and 2 as arguments. The function re-
turns the value of 4 raised to the power of 2, which is assigned to the area variable.

Other Common Mathematical Functions

In addition to sqrt and pow, Table 6-2 describes several other mathematical functions
that most programming languages provide.

Table 6-2 Other common mathematical functions

Function Name Description and Example Usage

abs Returns the absolute value of the argument.

Example: After the following statement executes, the variable y will contain
the absolute value of the value in x. The variable x will remain unchanged.

y = abs(x)

cos Returns the cosine of the argument. The argument should be an angle
expressed in radians.

Example: After the following statement executes, the variable y will contain
the cosine of the angle stored in the variable x. The variable x will remain
unchanged.

y = cos(x)

round Accepts a real number as an argument and returns the value of the argument
rounded to the nearest integer. For example, round(3.5) will return 4, and
round(3.2) will return 3.

Example: After the following statement executes, the variable y will contain
the value of the variable x rounded to the nearest integer. The variable x will
remain unchanged.

y = round(x)

6.3 More Library Functions 251

Data Type Conversion Functions
Most programming languages provide library functions that convert values from one
data type to another. For example, most languages provide a function that converts a
real number to an integer, as well as a function that converts an integer to a real num-
ber. In this book’s pseudocode, we will use the toInteger function to convert a real
number to an integer, and the toReal function to convert an integer to a real number.
These functions are described in Table 6-3.

Table 6-2 Other common mathematical functions (continued)

Function Name Description and Example Usage

sin Returns the sine of the argument. The argument should be an angle
expressed in radians.

Example: After the following statement executes, the variable y will
contain the sine of the angle stored in the variable x. The variable x will
remain unchanged.

y = sin(x)

tan Returns the tangent of the argument. The argument should be an angle
expressed in radians.

Example: After the following statement executes, the variable y will
contain the tangent of the angle stored in the variable x. The variable x will
remain unchanged.

y = tan(x)

Table 6-3 Data type conversion functions

Function Description and Example Usage

toInteger The toInteger function accepts a real number as its argument and returns
that number converted to an integer. If the real number has a fractional part,
the fractional part will be thrown away. For example, the function call
toInteger(2.5) will return 2.

Example: If the following were actual code, the variable i would contain the
value 2 after these statements execute.

Declare Integer i
Declare Real r = 2.5
Set i = toInteger(r)

toReal The toReal function accepts an integer number as its argument and returns
that number converted to a real number.

Example: If the following were actual code, the variable r would contain the
value 7.0 after these statements execute.

Declare Integer i = 7
Declare Real r
Set r = toReal(i)

252 Chapter 6 Functions

In many languages, an error will occur if you try to assign a value of one data type to a
variable of another data type. For example, look at the following pseudocode:

Declare Integer number
Set number = 6.17 This will cause an error in many languages!

The first statement declares an Integer variable named number. The second statement
attempts to assign a real number, 6.17, to the variable. In most programming languages
this will cause an error because an integer variable cannot hold fractional values. The
error that will result is sometimes referred to as a type mismatch error.

NOTE: Most languages let you assign an integer value to a real variable without
causing an error because doing so does not cause a loss of data. Functions for con-
verting integers to real numbers still exist in case you need to explicitly perform this
type of conversion.

Sometimes you might write code that causes a type mismatch error without realizing it.
For example, look at the pseudocode in Program 6-11. This program calculates the
number of people who can be served with a given amount of lemonade.

Program 6-11

1 // Declare a variable to hold the number
2 // of ounces of lemonade available.
3 Declare Real ounces
4
5 // Declare a variable to hold the number
6 // of people whom we can serve.
7 Declare Integer numberOfPeople
8
9 // Constant for the number of ounces per person.
10 Constant Integer OUNCES_PER_PERSON = 8
11
12 // Get the number of ounces of lemonade available.
13 Display "How many ounces of lemonade do you have?"
14 Input ounces
15
16 // Calculate the number of people who can be served.
17 Set numberOfPeople = ounces / OUNCES_PER_PERSON Error!
18
19 // Display the number of people who can be served.
20 Display "You can serve ", numberOfPeople, " people."

The ounces variable, declared in line 3, will hold the number of ounces of lemonade
that are available, and the numberOfPeople variable, declared in line 7, will hold the
number of people who can be served. In line 10, the OUNCES_PER_PERSON constant is
initialized with the value 8. This indicates that each person consumes 8 ounces of
lemonade.

After the number of ounces of lemonade are entered and stored in the ounces vari-
able (in line 14), the statement in line 17 attempts to calculate the number of people

6.3 More Library Functions 253

who can be served. But there is a problem with this statement: numberOfPeople is
an Integer variable, and the math expression ounces / OUNCES_PER_PERSON will
most likely result in a real number. (For example, if ounces is set to 12, the result
will be 1.5.) When the statement attempts to assign the result of the math expression
to numberOfPeople, an error will result.

At first, you might decide to simply change the data type of the numberOfPeople
variable to Real. That would fix the error, but it wouldn’t make sense to use a Real
variable to hold the number of people. After all, you can’t serve fractional people at
your lemonade stand! A better solution is to convert the result of the math expres-
sion ounces / OUNCES_PER_PERSON to an integer, and then assign that integer to the
numberOfPeople variable. This is the approach taken in Program 6-12.

Program 6-12

1 // Declare a variable to hold the number
2 // of ounces of lemonade available.
3 Declare Real ounces
4
5 // Declare a variable to hold the number
6 // of people whom we can serve.
7 Declare Integer numberOfPeople
8
9 // Constant for the number of ounces per person.
10 Constant Integer OUNCES_PER_PERSON = 8
11
12 // Get the number of ounces of lemonade available.
13 Display "How many ounces of lemonade do you have?"
14 Input ounces
15
16 // Calculate the number of people who can be served.
17 Set numberOfPeople = toInteger(ounces / OUNCES_PER_PERSON)
18
19 // Display the number of people who can be served.
20 Display "You can serve ", numberOfPeople, " people."

Program Output (with Input Shown in Bold)

How many ounces of lemonade do you have?
165 [Enter]
You can serve 20 people.

In this version of the program, line 17 has been rewritten as follows:

Set numberOfPeople = toInteger(ounces / OUNCES_PER_PERSON)

Let’s see how this statement worked in the sample running of the program. When
this statement executes, the math expression ounces / OUNCES_PER_PERSON is eval-
uated. The user entered 165 into the ounces variable, so this expression gives us the
value 20.625. This value is then passed as an argument to the toInteger function.
The toInteger function throws away the .625 part of the number and returns the
integer 20. The integer 20 is then assigned to the numberOfPeople variable.

254 Chapter 6 Functions

The toInteger function always throws away the fractional part of its argument. In
this particular program it is acceptable to do this because you are calculating the
number of people you can serve with the amount of available lemonade. Any frac-
tional part that remains represents an amount of leftover lemonade that is not a full
serving.

Formatting Functions
Most programming languages provide one or more functions that format numbers in
some way. A common use of formatting functions is to format numbers as currency
amounts. In this book we will use a function named currencyFormat that accepts a
Real number as an argument and returns a string containing the number formatted
as a currency amount. The following pseudocode shows an example of how the
currencyFormat function can be used.

Declare Real amount = 6450.879
Display currencyFormat(amount)

If this pseudocode were an actual program it would display:

$6,450.88

Notice that the function displays a currency symbol (in this case a dollar sign), inserts
commas where necessary, and rounds the number to two decimal places.

NOTE: Many programming languages today support localization, which means
they can be configured for a specific country. In these languages a function such as
currencyFormat would display the correct currency symbol for the country that the
program is localized for.

String Functions
Many types of programs work extensively with strings. For example, text editors like
Notepad and word processors like Microsoft Word work almost entirely with strings.
Web browsers also work heavily with strings. When a Web browser loads a Web page,
it reads formatting instructions that are written into the text of the Web page.

Most programming languages provide several library functions for working with
strings. This section discusses the most commonly supported string functions.

The length Function

The length function returns the length of a string. It accepts a string as its argument
and returns the number of characters in the string (the string’s length). The value that
is returned is an integer. The following pseudocode shows how the length function
might be used. In this program segment, the length of a password is checked to make
sure it is at least six characters long.

Display "Enter your new password."
Input password
If length(password) < 6 Then

Display "The password must be at least six characters long."

End If

6.3 More Library Functions 255

The append Function

The append function accepts two strings as arguments, which we will refer to as
string1 and string2. It returns a third string that is created by appending string2
to the end of string1. After the function executes, string1 and string2 will remain
unchanged. The following pseudocode shows an example of its usage:

Declare String lastName = "Conway"
Declare String salutation = "Mr. "
Declare String properName
Set properName = append(salutation, lastName)
Display properName

If this pseudocode were an actual program, it would display:

Mr. Conway

NOTE: The process of appending one string to the end of another string is called
concatenation.

The toUpper and toLower Functions

The toUpper and toLower functions convert the case of the alphabetic characters in a
string. The toUpper function accepts a string as an argument and returns a string that
is a copy of the argument, but with all characters converted to uppercase. Any charac-
ter that is already uppercase or is not an alphabetic letter is left unchanged. The follow-
ing pseudocode shows an example of its usage:

Declare String str = "Hello World!"
Display toUpper(str)

If this pseudocode were an actual program, it would display:

HELLO WORLD!

The toLower function accepts a string as an argument and returns a string that is a
copy of the argument, but with all characters converted to lowercase. Any character
that is already lowercase or is not an alphabetic letter is left unchanged. The following
pseudocode shows an example of its usage:

Declare String str = "WARNING!"
Display toLower(str)

If this pseudocode were an actual program, it would display:

warning!

The toUpper and toLower functions are useful for making case-insensitive string
comparisons. Normally, string comparisons are case-sensitive, which means that the
uppercase characters are distinguished from the lowercase characters. For example,
in a case-sensitive comparison the string "hello" is not the same as the strings
"HELLO" or "Hello" because the case of the characters is different. Sometimes it is
more convenient to perform a case-insensitive comparison, in which the case of the
characters is ignored. In a case-insensitive comparison, the string "hello" is consid-
ered the same as "HELLO" and "Hello".

256 Chapter 6 Functions

For example, look at the following pseudocode:

Declare String again
Do

Display "Hello!"
Display "Do you want to see that again? (Y = Yes)"
Input again

While toUpper(again) == "Y"

The loop displays “Hello!” and then prompts the user to enter “Y” to see it again. The
expression toUpper(again) == "Y" will be true if the user enters either “y” or “Y.”
Similar results can be achieved by using the toLower function, as shown here:

Declare String again
Do

Display "Hello!"
Display "Do you want to see that again? (Y = Yes)"
Input again

While toLower(again) == "y"

The substring Function

This function returns a substring, which is a string within a string. The substring
function typically accepts three arguments: (1) a string that you want to extract a sub-
string from, (2) the beginning position of the substring, and (3) the ending position of
the substring.

Each character in a string is identified by its position number. The first character in a
string is at position 0, the second character is at position 1, and so forth. In the sample
pseudocode below, the substring function returns the substring in positions 5
through 7 of the string "New York City".

Declare String str = "New York City"
Declare String search
Set search = substring(str, 5, 7)
Display search

If this pseudocode were an actual program, it would display:

ork

The substring function can also be used to extract individual characters from a
string. For example, look at the following pseudocode:

Declare String name = "Kevin"
Display substring(name, 2, 2)

This code will display:

v

The function call substring(name, 2, 2) will return the substring that begins and
ends at position 2. In this case, that’s the substring "v". The pseudocode in Program 6-13
shows another example. This program prompts the user to enter a string, and then it
counts the number of times the letter “T” appears in the string.

6.3 More Library Functions 257

Program 6-13

1 // Declare a variable to hold a string.
2 Declare String str
3
4 // Declare a variable to hold the number
5 // of Ts in a string.
6 Declare Integer numTs = 0
7
8 // Declare a counter variable.
9 Declare Integer counter
10
11 // Get a sentence from the user.
12 Display "Enter a string."
13 Input str
14
15 // Count the number of Ts in the string.
16 For counter = 0 To length(str)
17 If substring(str, counter, counter) == "T" Then
18 numTs = numTs + 1
19 End If
20 End For
21
22 // Display the number of Ts.
23 Display "That string contains ", numTs
24 Display "instances of the letter T."

Program Output (with Input Shown in Bold)

Enter a string.
Ten Times I Told You To STOP! [Enter]
That string contains 5
instances of the letter T.

The contains Function

The contains function accepts two strings as arguments. It returns True if the first
string contains the second string; otherwise, the function returns False. For example,
the following pseudocode determines whether the string "four score and seven
years ago" contains the string "seven":

Declare string1 = "four score and seven years ago"
Declare string2 = "seven"
If contains(string1, string2) Then

Display string2, " appears in the string."
Else

Display string2, " does not appear in the string."
End If

If this were actual code in a program, it would display “seven appears in the string.”

258 Chapter 6 Functions

The stringToInteger and stringToReal Functions

Strings are sequences of characters, and are meant to hold text items such as names,
addresses, descriptions, and so on. You can also store numbers as strings. In a pro-
gram, any time you put quotation marks around a number, it becomes a string instead
of a number. For example, the following pseudocode declares a String variable
named interestRate and initializes it with the string "4.3":

Declare String interestRate = "4.3"

Problems can arise when you store numbers as strings, however. Most of the things
that you do with numbers, such as arithmetic and numeric comparisons, cannot be
done with strings. Those types of operations can be done only with numeric data such
as Integers and Reals.

Some programs must read data from a source that can provide input only as strings.
This commonly happens with programs that read data from files. In addition, some
programming languages allow you to read keyboard input only as strings. In these sit-
uations, numbers that are read as input initially come into the program as strings and
then have to be converted to a numeric data type.

Most programming languages provide library functions that convert strings to
numbers. The following pseudocode examples use the stringToInteger and
stringToReal functions for this purpose. The stringToInteger function accepts a
string as an argument, converts it to an Integer, and returns the Integer value. For
example, suppose a program has a String variable named str, and an integer value
has been stored as a string in this variable. The following statement converts the con-
tents of the str variable to an Integer and stores it in the intNumber variable.

Set intNumber = stringToInteger(str)

The stringToReal function works the same way, but it converts a string to a Real.
For example, suppose a real number has been stored as a string in the String variable
named str. The following statement converts the contents of the str variable to a
Real and stores it in the realNumber variable.

Set realNumber = stringToReal(str)

When you use a function such as these, there is always the possibility of an error. For
example, look at the following pseudocode:

Set intNumber = stringToInteger("123abc")

Obviously, the string "123abc" cannot be converted to an Integer because it contains
alphabetic characters. Here is another example that will cause an error:

Set realNumber = stringToReal("3.14.159")

The string "3.14.159" cannot be converted to a Real because it has two decimal
points. Exactly what happens when these errors occur depends on the programming
language.

The isInteger and isReal Functions

To help prevent errors when converting strings to numbers, many programming lan-
guages provide library functions that test a string and then return either True or
False indicating whether the string can successfully be converted to a number. The

Review Questions 259

following pseudocode examples use the isInteger function to determine whether a
string can be converted to an Integer, and the isReal function to determine whether
a string can be converted to a Real. The following example uses the isInteger func-
tion. Assume str is a String and intNumber is an Integer.

If isInteger(str) Then
Set intNumber = stringToInteger(str)

Else
Display "Invalid data"

End If

The isReal function works the same way, as shown in the following example (assume
str is a String and realNumber is an Integer).

If isReal(str) Then
Set realNumber = stringToReal(str)

Else
Display "Invalid data"

End If

Review Questions

Multiple Choice

1. This is a prewritten function that is built into a programming language.

a. standard function
b. library function
c. custom function
d. cafeteria function

2. This term describes any mechanism that accepts input, performs some operation
that cannot be seen on the input, and produces output.

a. glass box
b. white box
c. opaque box
d. black box

3. This part of a function definition specifies the data type of the value that the
function returns.

a. header
b. footer
c. body
d. Return statement

4. This part of a function definition is comprised of one or more statements that are
executed when the function is called.

a. header
b. footer
c. body
d. Return statement

5. This statement causes a function to end and sends a value back to the part of the
program that called the function.

a. End
b. Send
c. Exit
d. Return

6. This is a design tool that describes the input, processing, and output of a function.

a. hierarchy chart
b. IPO chart
c. datagram chart
d. data processing chart

7. This type of function returns either True or False.

a. Binary
b. TrueFalse
c. Boolean
d. logical

8. This is an example of a data type conversion function.

a. sqrt
b. toReal
c. substring
d. isNumeric

9. This type of error occurs when you try to assign a value of one data type to a
variable of another data type.

a. type mismatch error
b. Boolean logic error
c. relational error
d. bit conversion error

10. This is a string inside of another string.

a. substring
b. inner string
c. mini string
d. component string

True or False

1. The code for a library function must appear in a program in order for the program
to call the library function.

2. Complex mathematical expressions can sometimes be simplified by breaking out
part of the expression and putting it in a function.

3. In many languages it is an error to assign a real number to an integer variable.

4. In some languages you must use a library function to raise a number to a power.

5. In a case-sensitive comparison, the strings "yoda" and "YODA" are equivalent.

260 Chapter 6 Functions

Short Answer

1. What is the difference between a module and a function?

2. What three characteristics of a function are described in an IPO chart?

3. When a conversion function is used to convert a real number to an integer, what
usually happens to the real number’s fractional part?

4. What is a substring?

5. What is the purpose of the stringToInteger and stringToReal functions
described in this chapter?

6. What is the purpose of the isInteger and isReal functions described in this
chapter?

Algorithm Workbench

1. As shown in this chapter, write a pseudocode statement that generates a random
number in the range of 1 through 100 and assigns it to a variable named rand.

2. The following pseudocode statement calls a function named half, which returns a
value that is half that of the argument. (Assume both the result and number
variables are Real.) Write pseudocode for the function.
Set result = half(number)

3. A pseudocode program contains the following function definition:
Function Integer cube(Integer num)

Return num * num * num
End Function

Write a statement that passes the value 4 to this function and assigns its return
value to the variable result.

4. Design a function named timesTen that accepts an Integer argument. When the
function is called, it should return the value of its argument multiplied times 10.

5. Design a function named getFirstName that asks the user to enter his or her first
name, and returns it.

6. Assume that a program has two String variables named str1 and str2. Write a
pseudocode statement that assigns an all uppercase version of str1 to the str2
variable.

Debugging Exercises
1. The programmer intends for this pseudocode to display three random numbers in

the range of 1 through 7. According to the way we've been generating random
numbers in this book, however, there appears to be an error. Can you find it?
// This program displays three random numbers
// in the range of 1 through 7.
Declare Integer count

// Display three random numbers.
For count = 1 To 3

Display random(7, 1)
End For

Debugging Exercises 261

262 Chapter 6 Functions

2. Can you find the reason that the following pseudocode function does not return
the value indicated in the comments?
// The calcDiscountPrice function accepts an item’s price and
// the discount percentage as arguments. It uses those
// values to calculate and return the discounted price.
Function Real calcDiscountPrice(Real price, Real percentage)

// Calculate the discount.
Declare Real discount = price * percentage

// Subtract the discount from the price.
Declare Real discountPrice = price – discount

// Return the discount price.
Return discount

End Function

3. Can you find the reason that the following pseudocode does not perform as indi-
cated in the comments?
// Find the error in the following pseudocode.
Module main()

Declare Real value, result

// Get a value from the user.
Display "Enter a value."
Input value

// Get 10 percent of the value.
Call tenPercent(value)

// Display 10 percent of the value.
Display "10 percent of ", value, " is ", result

End Module

// The tenPercent function returns 10 percent
// of the argument passed to the function.
Function Real tenPercent(Real num)

Return num * 0.1
End Function

Programming Exercises
1. Rectangle Area

The area of a rectangle is calculated according to the following formula:

Area = Width × Length

Design a function that accepts a rectangle’s width and length as arguments and re-
turns the rectangle’s area. Use the function in a program that prompts the user to
enter the rectangle’s width and length, and then displays the rectangle’s area.

2. Feet to Inches

One foot equals 12 inches. Design a function named feetToInches that accepts a
number of feet as an argument, and returns the number of inches in that many feet.
Use the function in a program that prompts the user to enter a number of feet and
then displays the number of inches in that many feet.

The Rectangle
Area Problem

VideoNote

Programming Exercises 263

3. Math Quiz

Design a program that gives simple math quizzes. The program should display two
random numbers that are to be added, such as:

247
+ 129

The program should allow the student to enter the answer. If the answer is correct,
a message of congratulations should be displayed. If the answer is incorrect, a mes-
sage showing the correct answer should be displayed.

4. Maximum of Two Values

Design a function named max that accepts two integer values as arguments and re-
turns the value that is the greater of the two. For example, if 7 and 12 are passed
as arguments to the function, the function should return 12. Use the function in a
program that prompts the user to enter two integer values. The program should
display the value that is the greater of the two.

5. Falling Distance

When an object is falling because of gravity, the following formula can be used to
determine the distance the object falls in a specific time period:

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and
t is the amount of time, in seconds, that the object has been falling.

Design a function named fallingDistance that accepts an object’s falling time (in
seconds) as an argument. The function should return the distance, in meters, that the
object has fallen during that time interval. Design a program that calls the function in
a loop that passes the values 1 through 10 as arguments and displays the return value.

6. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following
formula can be used to determine a moving object’s kinetic energy:

The variables in the formula are as follows: KE is the kinetic energy, m is the ob-
ject’s mass in kilograms, and v is the object’s velocity, in meters per second.

Design a function named kineticEnergy that accepts an object’s mass (in kilo-
grams) and velocity (in meters per second) as arguments. The function should
return the amount of kinetic energy that the object has. Design a program that asks
the user to enter values for mass and velocity, and then calls the kineticEnergy
function to get the object’s kinetic energy.

7. Test Average and Grade

Write a program that asks the user to enter five test scores. The program should
display a letter grade for each score and the average test score. Design the follow-
ing functions in the program:
● calcAverage—This function should accept five test scores as arguments and

return the average of the scores.

KE mv2= 1
2

d gt2= 1
2

264 Chapter 6 Functions

● determineGrade—This function should accept a test score as an argument
and return a letter grade for the score (as a String), based on the following
grading scale:

Score Letter Grade
90–100 A
80–89 B
70–79 C
60–69 D
Below 60 F

8. Odd/Even Counter

In this chapter you saw an example of how to design an algorithm that determines
whether a number is even or odd (see Returning Boolean Values in Section 6.2).
Design a program that generates 100 random numbers, and keeps a count of how
many of those random numbers are even and how many are odd.

9. Prime Numbers

A prime number is a number that is only evenly divisible by itself and 1. For exam-
ple, the number 5 is prime because it can only be evenly divided by 1 and 5. The
number 6, however, is not prime because it can be divided evenly by 1, 2, 3, and 6.

Design a Boolean function named isPrime, which takes an integer as an argument
and returns True if the argument is a prime number, or False otherwise. Use the
function in a program that prompts the user to enter a number and then displays a
message indicating whether the number is prime.

TIP: Recall that the MOD operator divides one number by another and returns the
remainder of the division. In an expression such as num1 MOD num2, the MOD operator
will return 0 if num1 is evenly divisible by num2.

10. Prime Number List

This exercise assumes you have already designed the isPrime function in Pro-
gramming Exercise 9. Design another program that displays all of the prime
numbers from 1 through 100. The program should have a loop that calls the
isPrime function.

11. Rock, Paper, Scissors Game

Design a program that lets the user play the game of Rock, Paper, Scissors against
the computer. The program should work as follows:

(1) When the program begins, a random number in the range of 1 through 3 is
generated. If the number is 1, then the computer has chosen rock. If the num-
ber is 2, then the computer has chosen paper. If the number is 3, then the
computer has chosen scissors. (Don’t display the computer’s choice yet.)

(2) The user enters his or her choice of “rock,” “paper,” or “scissors” at the
keyboard.

(3) The computer’s choice is displayed.

Programming Exercises 265

(4) The program should display a message indicating whether the user or the
computer was the winner. A winner is selected according to the following
rules:
● If one player chooses rock and the other player chooses scissors, then rock

wins. (The rock smashes the scissors.)
● If one player chooses scissors and the other player chooses paper, then

scissors wins. (Scissors cut paper.)
● If one player chooses paper and the other player chooses rock, then paper

wins. (Paper wraps rock.)
● If both players make the same choice, the game must be played again to

determine the winner.

12. Slot Machine Simulation

A slot machine is a gambling device that the user inserts money into and then pulls
a lever (or presses a button). The slot machine then displays a set of random im-
ages. If two or more of the images match, the user wins an amount of money,
which the slot machine dispenses back to the user.

Design a program that simulates a slot machine. When the program runs, it should
do the following:
● Ask the user to enter the amount of money he or she wants to insert into the slot

machine.
● Instead of displaying images, the program will randomly select a word from the

following list:

Cherries, Oranges, Plums, Bells, Melons, Bars

The program will select and display a word from this list three times.
● If none of the randomly selected words match, the program will inform the user

that he or she has won $0. If two of the words match, the program will inform
the user that he or she has won two times the amount entered. If three of the
words match, the program will inform the user that he or she has won three
times the amount entered.

● The program will ask whether the user wants to play again. If so, these steps are
repeated. If not, the program displays the total amount of money entered into
the slot machine and the total amount won.

This page intentionally left blank

TOPICS

7.1 Garbage In, Garbage Out

7.2 The Input Validation Loop

7.3 Defensive Programming

Input Validation

C
H

A
P

T
E

R

7

267

7.1 Garbage In, Garbage Out

CONCEPT: If a program reads bad data as input, it will produce bad data as out-
put. Programs should be designed to reject bad data that is given as
input.

One of the most famous sayings among computer programmers is “garbage in,
garbage out.” This saying, sometimes abbreviated as GIGO, refers to the fact that
computers cannot tell the difference between good data and bad data. If a user pro-
vides bad data as input to a program, the program will process that bad data and, as a
result, will produce bad data as output. For example, look at the pseudocode for the
payroll program in Program 7-1 and notice what happens in the sample run when the
user gives bad data as input.

Program 7-1

1 // Variables to hold the hours worked, the
2 // hourly pay rate, and the gross pay.
3 Declare Real hours, payRate, grossPay
4
5 // Get the number of hours worked.
6 Display "Enter the number of hours worked."
7 Input hours
8
9 // Get the hourly pay rate.
10 Display "Enter the hourly pay rate."

268 Chapter 7 Input Validation

11 Input payRate
12
13 // Calculate the gross pay.
14 Set grossPay = hours * payRate
15
16 // Display the gross pay.
17 Display "The gross pay is ", currencyFormat(grossPay)

Program Output (with Input Shown in Bold)

Enter the number of hours worked.
400 [Enter]
Enter the hourly pay rate.
20 [Enter]
The gross pay is $8,000.00

Did you spot the bad data that was provided as input? The person receiving the pay-
check will be pleasantly surprised, because in the sample run the payroll clerk entered
400 as the number of hours worked. The clerk probably meant to enter 40, because
there are not 400 hours in a week. The computer, however, is unaware of this fact,
and the program processed the bad data just as if it were good data. Can you think
of other types of input that can be given to this program that will result in bad out-
put? One example is a negative number entered for the hours worked; another is an
invalid hourly pay rate.

Sometimes stories are reported in the news about computer errors that mistakenly
cause people to be charged thousands of dollars for small purchases or to receive large
tax refunds that they were not entitled to. These “computer errors” are rarely caused
by the computer, however; they are more commonly caused by software bugs or bad
data that was read into a program as input.

The integrity of a program’s output is only as good as the integrity of its input. For this
reason, you should design your programs in such a way that bad input is never ac-
cepted. When input is given to a program, it should be inspected before it is processed.
If the input is invalid, the program should discard it and prompt the user to enter the
correct data. This process is known as input validation. This chapter discusses tech-
niques that you can use to validate data before it is processed.

Checkpoint

7.1 What does the phrase “garbage in, garbage out” mean?

7.2 Give a general description of the input validation process.

7.2 The Input Validation Loop

CONCEPT: Input validation is commonly done with a loop that iterates as long as
an input variable contains bad data.

Figure 7-1 shows a common technique for validating an item of input. In this tech-
nique, the input is read, and then a pretest loop is executed. If the input data is invalid,

7.2 The Input Validation Loop 269

the body of the loop executes. The loop displays an error message so the user will
know that the input was invalid, and then the loop reads the new input. The loop
repeats as long as the input is invalid.

Get input

Is the input invalid? Get the input againDisplay an
error message

Yes
(True)

No
(False)

Figure 7-1 Logic containing an input validation loop

Notice that the flowchart in Figure 7-1 reads input in two places: first just before the loop
and then inside the loop. The first input operation—just before the loop—is called a
priming read, and its purpose is to get the first input value that will be tested by the valida-
tion loop. If that value is invalid, the loop will perform subsequent input operations.

Let’s consider an example. Suppose you are designing a program that reads a test score
and you want to make sure the user does not enter a value less than 0. The following
pseudocode shows how you can use an input validation loop to reject any input value
that is less than 0.

// Get a test score.
Display "Enter a test score."
Input score

// Make sure it is not less than 0.
While score < 0

Display "ERROR: The score cannot be less than 0."
Display "Enter the correct score."
Input score

End While

This pseudocode first prompts the user to enter a test score (this is the priming read),
and then the While loop executes. Recall from Chapter 5 that the While loop is a
pretest loop, which means it tests the expression score < 0 before performing an
iteration. If the user entered a valid test score, this expression will be false and the
loop will not iterate. If the test score is invalid, however, the expression will be true and
the statements in the body of the loop will execute. The loop displays an error message
and prompts the user to enter the correct test score. The loop will continue to iterate
until the user enters a valid test score.

The Input
Validation Loop

VideoNote

270 Chapter 7 Input Validation

NOTE: An input validation loop, such as the one in Figure 7-1, is sometimes called
an error trap or an error handler.

NOTE: This pseudocode used the OR operator to determine whether score was
outside the range. Think about what would happen if this Boolean expression used
the AND operator instead:

score < 0 AND score > 100

This expression would never be true because it is impossible for a number to be less
than 0 AND greater than 100!

This pseudocode only rejects negative test scores. What if you also want to reject any
test scores that are greater than 100? You can modify the input validation loop so it
uses a compound Boolean expression, as shown next.

// Get a test score.
Display "Enter a test score."
Input score
// Validate the test score.
While score < 0 OR score > 100

Display "ERROR: The score cannot be less than 0"
Display "or greater than 100."
Display "Enter the correct score."
Input score

End While

The loop in this pseudocode determines whether score is less than 0 or greater than 100. If
either is true, an error message is displayed and the user is prompted to enter a correct score.

In the Spotlight:
Designing an Input Validation Loop
In Chapter 5 you saw a program that your friend Samantha can use to calculate the re-
tail price of an item in her import business (see Program 5-6 in Chapter 5). Samantha
has encountered a problem when using the program, however. Some of the items that
she sells have a wholesale cost of 50 cents, which she enters into the program as 0.50.
Because the 0 key is next to the key for the negative sign, she sometimes accidentally
enters a negative number. She has asked you to revise the program so it will not allow
a negative number to be entered for the wholesale cost.

You decide to add an input validation loop to the showRetail module that rejects any
negative numbers that are entered into the wholesale variable. Program 7-2 shows the
new pseudocode, with the new input validation code shown in lines 28 through 33.

Figure 7-2 shows a new flowchart for the showRetail module.

Program 7-2

1 Module main()
2 // Local variable

7.2 The Input Validation Loop 271

3 Declare String doAnother
4
5 Do
6 // Calculate and display a retail price.
7 Call showRetail()
8
9 // Do this again?
10 Display "Do you have another item? (Enter y for yes)"
11 Input doAnother
12 While doAnother == "y" OR doAnother == "Y"
13 End Module
14
15 // The showRetail module gets an item's wholesale cost
16 // from the user and displays its retail price.
17 Module showRetail()
18 // Local variables
19 Declare Real wholesale, retail
20
21 // Constant for the markup percentage
22 Constant Real MARKUP = 2.50
23
24 // Get the wholesale cost.
25 Display "Enter an item's wholesale cost."
26 Input wholesale
27
28 // Validate the wholesale cost.
29 While wholesale < 0
30 Display "The cost cannot be negative. Please"
31 Display "enter the correct wholesale cost."
32 Input wholesale
33 End While
34
35 // Calculate the retail price.
36 Set retail = wholesale * MARKUP
37
38 // Display the retail price.
39 Display "The retail price is $", retail
40 End Module

Program Output (with Input Shown in Bold)

Enter an item's wholesale cost.
–0.50 [Enter]
The cost cannot be negative. Please
enter the correct wholesale cost.
0.50 [Enter]
The retail price is $1.25
Do you have another item? (Enter y for yes)
n [Enter]

272 Chapter 7 Input Validation

Using a Posttest Loop to Validate Input
You might be wondering whether you could use a posttest loop to validate input in-
stead of using the priming read. For example, the pseudocode to get a test score and
validate it could be written as follows with a Do-While loop.

Display "Enter an item's
wholesale cost."

Input wholesale

Set retail =
wholesale * MARKUP

Display "The retail price
is $", retail

Declare Real wholesale,
retail

Constant MARKUP = 2.50

wholesale
< 0

Input wholesale

False

True
Display "The cost cannot

be negative. Please "

Display "enter the
correct wholesale cost."

showRetail()

Return

Figure 7-2 Flowchart for the showRetail module

7.2 The Input Validation Loop 273

Do
Display "Enter a test score."
Input score

While score < 0 OR score > 100

Although this logic will work, it does not display an error message when the user
enters an invalid value—it simply repeats the original prompt each time the loop iter-
ates. This might be confusing to the user, so it is usually better to have a priming read
followed by a pretest validation loop.

Writing Validation Functions
The input validation examples shown so far have been simple and straightforward.
You have seen how to write validation loops that reject both negative numbers and
numbers that are outside of a range. However, input validation can sometimes be more
complex than these examples.

For instance, suppose you are designing a program that prompts the user to enter a
product model number and should only accept the values 100, 200, and 300. You
could design the input algorithm as shown next.

// Get the model number.
Display "Enter the model number."
Input model

While model != 100 AND model != 200 AND model != 300
Display "The valid model numbers are 100, 200, and 300."
Display "Enter a valid model number."
Input model

End While

The validation loop uses a long compound Boolean expression that will iterate as long
as model does not equal 100 AND model does not equal 200 AND model does not
equal 300. Although this logic will work, you can simplify the validation loop by
writing a Boolean function to test the model variable and then calling that function
in the loop. For example, suppose you pass the model variable to a function you write
named isInvalid. The function returns True if model is invalid, or False other-
wise. You could rewrite the validation loop as follows:

// Get the model number.
Display "Enter the model number."
Input model

While isInvalid(model)
Display "The valid model numbers are 100, 200, and 300."
Display "Enter a valid model number."
Input model

End While

This makes the loop easier to read. It is evident now that the loop iterates as long as
model is invalid. The following pseudocode shows how you might design the
isInvalid function. It accepts a model number as an argument, and if the argument
is not 100 AND the argument is not 200 AND the argument is not 300, the function
returns True to indicate that it is invalid. Otherwise, the function returns False.

274 Chapter 7 Input Validation

Function Boolean isInvalid(Integer model)
// A local variable to hold True or False.
Declare Boolean status

// If the model number is invalid, set status to True.
// Otherwise, set status to False.
If model != 100 AND model != 200 AND model != 300 Then

Set status = True
Else

Set status = False
End If

// Return the test status.
Return status

End Function

Validating String Input
In some programs you must validate string input. For example, suppose you are
designing a program that asks a yes/no question, and you want to make sure that only
the strings "yes" or "no" are accepted as valid input. The following pseudocode
shows how this might be done.

// Get the answer to the question.
Display "Is your supervisor an effective leader?"
Input answer
// Validate the input.
While answer != "yes" AND answer != "no"

Display "Please answer yes or no. Is your supervisor an"
Display "effective leader?"
Input answer

End While

This input validation loop rejects any input except the strings "yes" and "no". This
particular design might be too rigid, however; as it is written, the loop performs a
case-sensitive comparison. This means that strings such as "YES", "NO", "Yes", and
"NO" will be rejected. To make the program more convenient for users, the program
should accept "yes" and "no" written in any combination of upper- or lowercase let-
ters. Recall from Chapter 6 that library functions such as toUpper and toLower can
help make case-insensitive string comparisons. The following pseudocode shows an ex-
ample using the toLower function.

// Get the answer to the question.
Display "Is your supervisor an effective leader?"
Input answer
// Validate the input.
While toLower(answer) != "yes" AND toLower(answer) != "no"

Display "Please answer yes or no. Is your supervisor an"
Display "effective leader?"
Input answer

End While

Sometimes the length of a string plays a role in the string’s validity. For example, you
have probably used a Web site or other system that required you to set up a pass-
word. Some systems require that passwords have a minimum number of characters.

7.3 Defensive Programming 275

To check the length of a string, you use the length function discussed in Chapter 6. In
the following pseudocode, the length function is used to make sure a password is at
least six characters long.

// Get the new password.
Display "Enter your new password."
Input password
// Validate the length of the password.
While length(password) < 6

Display "The password must be at least six"
Display "characters long. Enter your new password."
Input password

End While

Checkpoint

7.3 Describe the steps that are generally taken when an input validation loop is
used to validate data.

7.4 What is a priming read? What is its purpose?

7.5 If the input that is read by the priming read is valid, how many times will the
input validation loop iterate?

7.3 Defensive Programming

CONCEPT: Input validation is part of the practice of defensive programming.
Thorough input validation anticipates both obvious and unobvious
errors.

Defensive programming is the practice of anticipating errors that can happen while a
program is running, and designing the program to avoid those errors. All of the input
validation algorithms examined in this chapter are examples of defensive programming.

Some types of input errors are obvious and easily handled. For example, you should
make sure that negative numbers are not entered for items such as prices and test
scores. Some types of input errors are not so obvious, however. One example of such
an error is reading empty input, which happens when an input operation attempts to
read data, but there is no data to read. This occurs when an Input statement executes
and the user simply presses the e key without typing a value. Although different
programming languages handle the problem of empty input in different ways, there is
often a way to determine whether an input operation failed to read data.

Another often overlooked type of error is the entry of the wrong type of data. This
happens, for example, when a program attempts to read an integer but the user enters
a real number or a string. Most programming languages provide library functions that
you can use to avoid this type of error. Quite often you will find functions similar to the
isInteger and isReal functions discussed in Chapter 6. To use these functions in an
input validation algorithm, you typically follow these steps:

1. Read the input as a string.
2. Determine whether the string can be converted to the desired data type.

276 Chapter 7 Input Validation

Review Questions

Multiple Choice

1. GIGO stands for

a. great input, great output
b. garbage in, garbage out
c. GIGahertz Output
d. GIGabyte Operation

2. The integrity of a program’s output is only as good as the integrity of the program’s

a. compiler
b. programming language
c. input
d. debugger

3. If the string can be converted, convert it and continue processing; otherwise,
display an error message and attempt to read the data again.

Thorough input validation also requires that you check for accurate data. Even when
the user provides the right type of data, it might not be accurate. Consider the follow-
ing examples:

● When the user enters a U.S. address, the state abbreviation should be checked to
make sure it is a two-character string and also a valid U.S. Postal Service abbrevi-
ation. For example, there is no U.S. state with the abbreviation NW. Similar vali-
dations can be performed on international addresses. For example, Canadian
province abbreviations are two-character strings.

● When the user enters a U.S. address, the value entered as the ZIP code should be
checked to verify that it is both in the correct format (a 5- or 9-digit number) and
a valid U.S. Postal Service ZIP code. For example, 99999 is not currently a valid
U.S. ZIP code. In addition, ZIP codes should be valid for the state that is entered.
(Databases of valid ZIP codes are readily available for a small fee. Programmers
usually purchase one of these and use it in the validation process.)

● Hourly wages and salary amounts should be checked to make sure they are
numeric values and within the range of allowable wages established by the
company.

● Dates should be checked for validity. For example, the date February 29 should
be accepted only in leap years, and invalid dates such as February 30 should
never be accepted.

● Time measurements should also be checked for validity. For example, there are
168 hours in a week, so a payroll program should verify that no value greater
than 168 is entered for the number of hours worked in a week.

● Reasonableness should also be considered when validating data. Even though
there are 168 hours in a week, it is improbable that any employee ever works
24 hours a day, 7 days a week. Dates should also be checked for reasonableness.
For example, a birth date can’t be in the future and a person, based on birth year,
probably isn’t 150 years old. When unreasonable data is entered, the program
should at least ask the user to confirm that he or she intended to enter it.

Review Questions 277

3. The input operation that appears just before a validation loop is known as the

a. prevalidation read
b. primordial read
c. initialization read
d. priming read

4. Validation loops are also known as

a. error traps
b. doomsday loops
c. error avoidance loops
d. defensive programming loops

5. The term empty input describes what happens when

a. the user presses the x and then the e key
b. an input operation attempts to read data, but there is no data to read
c. the user enters 0 when 0 is an invalid value
d. the user enters any invalid data as input

True or False

1. The process of input validation works like this: When the user of a program enters
invalid data, the program should ask the user, “Are you sure you meant to enter
that?” If the user answers “yes,” the program should accept the data.

2. The priming read appears inside the validation loop.

3. The approach of using a posttest validation loop shown in this chapter requires a
priming read.

Short Answer

1. What does the phrase “garbage in, garbage out” mean?

2. Give a general description of the input validation process.

3. What is the purpose of the priming read?

4. In this chapter you saw how a posttest loop can be used in input validation, as an
alternative to the priming read followed by a pretest loop. Why is it typically not
best to use a posttest loop approach?

Algorithm Workbench

1. Design an algorithm that prompts the user to enter a positive nonzero number and
validates the input.

2. Design an algorithm that prompts the user to enter a number in the range of 1
through 100 and validates the input.

3. Design an algorithm that prompts the user to enter “yes” or “no” and validates the
input. (Use a case-insensitive comparison.)

4. Design an algorithm that prompts the user to enter a number that is greater than
99 and validates the input.

5. Design an algorithm that prompts the user to enter a secret word. The secret word
should be at least 8 characters long. Validate the input.

278 Chapter 7 Input Validation

Debugging Exercises
1. Why does the following pseudocode not perform as indicated in the comments?

// This program asks the user to enter a value
// between 1 and 10 and validates the input.
Declare Integer value

// Get a value from the user.
Display "Enter a value between 1 and 10."
Input value

// Make sure the value is between 1 and 10.
While value < 1 AND value > 10

Display "ERROR: The value must be between 1 and 10."
Display "Enter a value between 1 and 10."
Input value

End While

2. Why does the following pseudocode not perform as indicated in the comments?
// This program gets a dollar amount from the user
// and validates the input.
Declare Real amount

// Get the amount from the user.
Display "Enter a dollar amount"
Input amount

// Make sure the amount is not less than zero. If it is,
// get a new amount from the user.
While amount < 0

Display "ERROR: The dollar amount cannot be less than 0."
Display "Enter a dollar amount."

End While

3. The following pseudocode works, but it performs a case-sensitive validation of the
user's input. How could the algorithm be improved so the user does not have to
pay attention to capitalization when entering a name?
// This program asks the user to enter a string
// and validates the input.
Declare String choice

// Get the user’s response.
Display "Cast your vote for Chess Team Captain."
Display "Would you like to nominate Lisa or Tim?"
Input choice

// Validate the input.
While choice != "Lisa" AND choice != "Tim"

Display "Please enter Lisa or Tim."
Display "Cast your vote for Chess Team Captain."
Display "Would you like to nominate Lisa or Tim?"
Input response

End While

Programming Exercises
1. Payroll Program with Input Validation

Design a payroll program that prompts the user to enter an employee’s hourly
pay rate and the number of hours worked. Validate the user’s input so that only
pay rates in the range of $7.50 through $18.25 and hours in the range of
0 through 40 are accepted. The program should display the employee’s gross pay.

2. Theater Seating Revenue with Input Validation

A dramatic theater has three seating sections, and it charges the following prices
for tickets in each section: section A seats cost $20 each, section B seats cost $15
each, and section C seats cost $10 each. The theater has 300 seats in section A,
500 seats in section B, and 200 seats in section C. Design a program that asks for
the number of tickets sold in each section and then displays the amount of
income generated from ticket sales. The program should validate the numbers
that are entered for each section.

3. Fat Gram Calculator

Design a program that asks for the number of fat grams and calories in a food
item. Validate the input as follows:
● Make sure the number of fat grams and calories are not less than 0.
● According to nutritional formulas, the number of calories cannot exceed fat

grams � 9. Make sure that the number of calories entered is not greater than
fat grams � 9.

Once correct data has been entered, the program should calculate and display the
percentage of calories that come from fat. Use the following formula:

Percentage of calories from fat = (Fat grams � 9) ÷ Calories

Some nutritionists classify a food as “low fat” if less than 30 percent of its calo-
ries come from fat. If the results of this formula are less than 0.3, the program
should display a message indicating the food is low in fat.

4. Speeding Violation Calculator

Design a program that calculates and displays the number of miles per hour over
the speed limit that a speeding driver was doing. The program should ask for the
speed limit and the driver’s speed. Validate the input as follows:
● The speed limit should be at least 20, but not greater than 70.
● The driver’s speed should be at least the value entered for the speed limit

(otherwise the driver was not speeding).

Once correct data has been entered, the program should calculate and display the
number of miles per hour over the speed limit that the driver was doing.

5. Rock, Paper, Scissors Modification

Programming Exercise 11 in Chapter 6 asked you to design a program that plays
the Rock, Paper, Scissors game. In the program, the user enters one of the three
strings—"rock", "paper", or "scissors"—at the keyboard. Add input valida-
tion (with a case-insensitive comparison) to make sure the user enters one of those
strings only.

Programming Exercises 279

The Payroll Program
with Input Validation
Problem

VideoNote

This page intentionally left blank

TOPICS

8.1 Array Basics

8.2 Sequentially Searching an Array

8.3 Processing the Contents of an Array

8.4 Parallel Arrays

8.5 Two-Dimensional Arrays

8.6 Arrays of Three or More Dimensions

Arrays

8.1 Array Basics

CONCEPT: An array allows you to store a group of items of the same data type
together in memory. Processing a large number of items in an array is
usually easier than processing a large number of items stored in sepa-
rate variables.

In the programs you have designed so far, you have used variables to store data in
memory. In most programming languages, the simplest way to store a value in mem-
ory is to store it in a variable. Variables work well in many situations, but they have
limitations. For example, they can hold only one value at a time. Consider the fol-
lowing pseudocode variable declaration:

Declare Integer number = 99

This pseudocode statement declares an Integer variable named number, initialized
with the value 99. Consider what happens if the following statement appears later in
the program:

Set number = 5

This statement assigns the value 5 to number, replacing the value 99 that was previ-
ously stored there. Because number is an ordinary variable, it can hold only one value
at a time.

Because variables hold only a single value, they can be cumbersome in programs that
process lists of data. For example, suppose you are asked to design a program that

8

281

C
H

A
P

T
E

R

282 Chapter 8 Arrays

holds the names of 50 employees. Imagine declaring 50 variables to hold all of those
names:

Declare String employee1
Declare String employee2
Declare String employee3
and so on . . .
Declare String employee50

Then, imagine designing the code to input all 50 names:

// Get the first employee name.
Display "Enter the name of employee 1."
Input employee1

// Get the second employee name.
Display "Enter the name of employee 2."
Input employee2

// Get the third employee name.
Display "Enter the name of employee 3."
Input employee3

and so on . . .

// Get the fiftieth employee name.
Display "Enter the name of employee 50."
Input employee50

As you can see, variables are not well-suited for storing and processing lists of data.
Each variable is a separate item that must be declared and individually processed.
Fortunately, most programming languages allow you to create arrays, which are
specifically designed for storing and processing lists of data. Like a variable, an array
is a named storage location in memory. Unlike a variable, an array can hold a group
of values. All of the values in an array must be the same data type. You can have an
array of Integers, an array of Reals, or an array of Strings, but you cannot store
a mixture of data types in an array. The following example shows how we will
declare an array in pseudocode:

Declare Integer units[10]

Notice that this statement looks like a regular Integer variable declaration except
for the number inside the brackets. The number inside the brackets, called a size
declarator, specifies the number of values that the array can hold. This pseudocode
statement declares an array named units that can hold 10 integer values. In most
programming languages, an array size declarator must be a nonnegative integer. Here
is another example:

Declare Real salesAmounts[7]

This statement declares an array named salesAmounts that can hold 7 real numbers.
The following pseudocode shows one more example. This statement declares an array
that can hold 50 strings. The name of the array is names.

Declare String names[50]

8.1 Array Basics 283

In most languages, an array’s size cannot be changed while the program is running.
If you have written a program that uses an array and then find that you must change
the array’s size, you have to change the array’s size declarator in the source code.
Then you must recompile the program (or rerun the program if you are using an
interpreted language) with the new size declarator. To make array sizes easier to
maintain, many programmers prefer to use named constants as array size declarators.
Here is an example:

Constant Integer SIZE = 10
Declare Integer units[SIZE]

As you will see later in this chapter, many array processing techniques require you to
refer to the array’s size. When you use a named constant as an array’s size declarator,
you can use the constant to refer to the size of the array in your algorithms. If you
ever need to modify the program so the array is a different size, you need only to
change the value of the named constant.

Array Elements and Subscripts
The storage locations in an array are known as elements. In memory, an array’s ele-
ments are usually located in consecutive memory locations. Each element in an array is
assigned a unique number known as a subscript. Subscripts are used to identify spe-
cific elements in an array. In most languages, the first element is assigned the subscript
0, the second element is assigned the subscript 1, and so forth. For example, suppose
a pseudocode program has the following declarations:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE]

As shown in Figure 8-1, the numbers array has five elements. The elements are
assigned the subscripts 0 through 4. (Because subscript numbering starts at zero, the
subscript of the last element in an array is one less than the total number of elements
in the array.)

Constant Integer SIZE = 5
Declare Integer numbers[SIZE]

Element
0

Element
1

Element
2

Element
3

Element
4

Figure 8-1 Array subscripts

Assigning Values to Array Elements
You access the individual elements in an array by using their subscripts. For exam-
ple, assuming numbers is the Integer array just described, the following pseudocode
assigns the values to each of its five elements.

284 Chapter 8 Arrays

Set numbers[0] = 20
Set numbers[1] = 30
Set numbers[2] = 40
Set numbers[3] = 50
Set numbers[4] = 60

This pseudocode assigns the value 20 to element 0, the value 30 to element 1, and so
forth. Figure 8-2 shows the contents of the array after these statements execute.

Element
0

Element
1

Element
2

Element
3

Element
4

20 30 40 50 60

Figure 8-2 Values assigned to each element

NOTE: The expression numbers[0] is pronounced “numbers sub zero.”

Inputting and Outputting Array Contents
You can read values from the keyboard and store them in an array element just as
you can a regular variable. You can also output the contents of an array element. The
pseudocode in Program 8-1 shows an array being used to store and display values
entered by the user.

Program 8-1

1 // Create a constant for the number of employees.
2 Constant Integer SIZE = 3
3
4 // Declare an array to hold the number of hours
5 // worked by each employee.
6 Declare Integer hours[SIZE]
7
8 // Get the hours worked by employee 1.
9 Display "Enter the hours worked by employee 1."
10 Input hours[0]
11
12 // Get the hours worked by employee 2.
13 Display "Enter the hours worked by employee 2."
14 Input hours[1]
15
16 // Get the hours worked by employee 3.
17 Display "Enter the hours worked by employee 3."
18 Input hours[2]
19

8.1 Array Basics 285

20 // Display the values entered.
21 Display "The hours you entered are:"
22 Display hours[0]
23 Display hours[1]
24 Display hours[2]

Program Output (with Input Shown in Bold)

Enter the hours worked by employee 1.
40 [Enter]
Enter the hours worked by employee 2.
20 [Enter]
Enter the hours worked by employee 3.
15 [Enter]
The hours you entered are:
40
20
15

Let’s take a closer look at the program. A named constant, SIZE, is declared in line
2 and initialized with the value 3. Then, an Integer array named hours is declared
in line 6. The SIZE constant is used as the array size declarator, so the hours array
will have 3 elements. The Input statements in lines 10, 14, and 18 read values from
the keyboard and store those values in the elements of the hours array. Then, the
Display statements in lines 22 through 24 output the values stored in each array
element.

In the sample running of the program, the user entered the values 40, 20, and 15,
which were stored in the hours array. Figure 8-3 shows the contents of the array after
these values are stored in it.

hours[0] hours[1] hours[2]

40 20 15

Figure 8-3 Contents of the hours array

Using a Loop to Step Through an Array
Most programming languages allow you to store a number in a variable and then use
that variable as a subscript. This makes it possible to use a loop to step through an
entire array, performing the same operation on each element. For example, look at
the pseudocode in Program 8-2.

Using a Loop
to Step Through
an Array

VideoNote

286 Chapter 8 Arrays

Program 8-2

1 // Declare an Integer array with 10 elements.
2 Declare Integer series[10]
3
4 // Declare a variable to use in the loop.
5 Declare Integer index
6
7 // Set each array element to 100.
8 For index = 0 To 9
9 Set series[index] = 100
10 End For

In line 2, an Integer array named series is declared with 10 elements, and in line
5 an Integer variable named index is declared. The index variable is used as a
counter in the For loop that appears in lines 8 through 10. In the loop, the index vari-
able takes on the values 0 through 9. The first time the loop iterates, index is set
to 0, so the statement in line 9 causes the array element series[0] to be set to 100.
The second time the loop iterates, index is set to 1, so the array element series[1]
is set to 100. This continues until the last loop iteration, in which series[9] is set
to 100.

Let’s look at another example. Program 8-1 could be simplified by using two For
loops: one for inputting the values into the array and the other for displaying the con-
tents of the array. This is shown in Program 8-3.

Program 8-3

1 // Create a constant for the size of the array.
2 Constant Integer SIZE = 3
3
4 // Declare an array to hold the number of hours
5 // worked by each employee.
6 Declare Integer hours[SIZE]
7
8 // Declare a variable to use in the loops.
9 Declare Integer index
10
11 // Get the hours for each employee.
12 For index = 0 To SIZE - 1
13 Display "Enter the hours worked by"
14 Display "employee number ", index + 1
15 Input hours[index]
16 End For
17
18 // Display the values entered.
19 Display "The hours you entered are:"
20 For index = 0 To SIZE - 1
21 Display hours[index]
22 End For

8.1 Array Basics 287

Program Output (with Input Shown in Bold)

Enter the hours worked by
employee number 1
40 [Enter]
Enter the hours worked by
employee number 2
20 [Enter]
Enter the hours worked by
employee number 3
15 [Enter]
The hours you entered are:
40
20
15

Let’s take a closer look at the first For loop, which appears in lines 12 through 16.
Here is the first line of the loop:

For index = 0 To SIZE - 1

This specifies that the index variable will be assigned the values 0 through 2 as the
loop executes. Why did we use the expression SIZE – 1 as the ending value for the
index variable? Remember, the subscript of the last element in an array is one less
than the size of the array. In this case, the subscript of the last element of the hours
array is 2, which is the value of the expression SIZE – 1.

Notice that inside the loop, in line 15, the index variable is used as a subscript:

Input hours[index]

During the loop’s first iteration, the index variable will be set to 0, so the user’s input
is stored in hours[0]. During the next iteration, the user’s input is stored in
hours[1]. Then, during the last iteration the user’s input is stored in hours[2].
Notice that the loop correctly starts and ends the index variable with valid subscript
values (0 through 2).

There is one last thing to point out about Program 8-3. This program reads the number
of hours worked by three employees referred to as “employee number 1,” “employee
number 2,” and “employee number 3.” Here are the Display statements that appear
inside the first For loop, in lines 13 and 14:

Display "Enter the hours worked by"
Display "employee number ", index + 1

Notice that the second Display statement uses the expression index + 1 to display
the employee number. What do you think would happen if we left out the + 1 part of
the expression, and the statements were written like this?

Display "Enter the hours worked by"
Display "employee number ", index

Because the index variable is assigned the values 0, 1, and 2 as the loop runs, these
statements would cause the program to refer to the employees as “employee number 0,”

288 Chapter 8 Arrays

“employee number 1,” and “employee number 2.” Most people find it unnatural to
start with 0 when counting people or things, so we used the expression index + 1 to
start the employee numbers at 1.

Processing the Elements of an Array
Processing array elements is no different than processing other variables. In the pre-
vious programs you saw how you can assign values to array elements, store input in
array elements, and display the contents of array elements. The following In the Spot-
light section shows how array elements can be used in math expressions.

In the Spotlight:
Using Array Elements in a Math Expression
Megan owns a small neighborhood coffee shop, and she has six employees who work
as baristas (coffee bartenders). All of the employees have the same hourly pay rate.
Megan has asked you to design a program that will allow her to enter the number of
hours worked by each employee and then display the amounts of all the employees’
gross pay. You determine that the program should perform the following steps:

1. For each employee: get the number of hours worked and store it in an array
element.

2. For each array element: use the value stored in the element to calculate an
employee’s gross pay. Display the amount of the gross pay.

Program 8-4 shows the pseudocode for the program, and Figure 8-4 shows a
flowchart.

Program 8-4

1 // Constant for the size of the array.
2 Constant Integer SIZE = 6
3
4 // Array to hold each employee's hours.
5 Declare Real hours[SIZE]
6
7 // Variable to hold the hourly pay rate.
8 Declare Real payRate
9
10 // Variable to hold a gross pay amount.
11 Declare Real grossPay
12
13 // Variable to use as a loop counter.
14 Declare Integer index
15
16 // Get each employee's hours worked.
17 For index = 0 To SIZE - 1
18 Display "Enter the hours worked by"
19 Display "employee ", index + 1
20 Input hours[index]
21 End For
22

8.1 Array Basics 289

23 // Get the hourly pay rate.
24 Display "Enter the hourly pay rate."
25 Input payRate
26
27 // Display each employee's gross pay.
28 Display "Here is each employee's gross pay."
29 For index = 0 To SIZE - 1
30 Set grossPay = hours[index] * payRate
31 Display "Employee ", index + 1, ": $",
32 currencyFormat(grossPay)
33 End For

Program Output (with Input Shown in Bold)

Enter the hours worked by employee 1.
10 [Enter]
Enter the hours worked by employee 2.
20 [Enter]
Enter the hours worked by employee 3.
15 [Enter]
Enter the hours worked by employee 4.
40 [Enter]
Enter the hours worked by employee 5.
20 [Enter]
Enter the hours worked by employee 6.
18 [Enter]
Enter the hourly pay rate.
12.75 [Enter]
Here is each employee's gross pay.
Employee 1: $127.50
Employee 2: $255.00
Employee 3: $191.25
Employee 4: $510.00
Employee 5: $255.00
Employee 6: $229.50

NOTE: Suppose Megan’s business increases and she has to hire two additional
baristas. This would require you to change the program so it processes 8 employ-
ees instead of 6. Because you used a named constant for the array size, this is a sim-
ple modification—you just have to change the statement in line 2 to read:

Constant Integer SIZE = 8

Because the SIZE constant is used as the array size declarator in line 5, the size of
the hours array will automatically become 8. Also, because you used the SIZE con-
stant to control the loop iterations in lines 17 and 29, the loops will automatically
iterate 8 times, once for each employee.

Imagine how much more difficult this modification would be if you had not used a
named constant to specify the array size. You would have to change each individ-
ual statement in the program that refers to the array size. Not only would this
require more work, but it would open the possibility for errors. If you overlooked
only one of the statements that refer to the array size, a bug would occur.

290 Chapter 8 Arrays

End

Display "Enter the
hours worked by"

Input hours[index]

index <=
SIZE - 1

True

False

index <=
SIZE - 1

Set index = 0

True

False

Set grossPay =
hours[index] * payRate

Set index = index + 1

Set index = index + 1

Display "Enter the
hourly pay rate."

Input payRate

Display "employee ",
index + 1

Constant Integer SIZE = 6
Declare Real hours[SIZE]
Declare Real payRate
Declare Real grossPay
Declare Integer index

Set index = 0

Display "Employee ",
index + 1, ": ",

currencyFormat(grossPay)

Start

Figure 8-4 Flowchart for Program 8-4

TIP: Programs 8-1, 8-3, and 8-4 show how values can be read from the keyboard
into array elements. When a large amount of data is stored in an array, it is usually
read from another source, such as a file on the computer’s disk drive. In Chapter 10
you will learn how to read data from a file and store it in an array.

NOTE: Array bounds checking typically happens at runtime, which is while the
program is running.

Watch for Off-by-One Errors
Because array subscripts start at 0 rather than 1, you have to be careful not to per-
form an off-by-one error. An off-by-one error occurs when a loop iterates one time
too many or one time too few. For example, look at the following pseudocode:

8.1 Array Basics 291

Array Initialization
Most languages allow you to initialize an array with values when you declare it. In
this book’s pseudocode, we will initialize arrays in the following manner:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE] = 10, 20, 30, 40, 50

The series of values separated with commas is called an initialization list. These val-
ues are stored in the array elements in the order they appear in the list. (The first value,
10, is stored in numbers[0], the second value, 20, is stored in numbers[1],
and so forth.) Here is another example:

Constant Integer SIZE = 7
Declare String days[SIZE] = "Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday",
"Saturday"

This pseudocode declares days as an array of 7 Strings, and initializes days[0] with
"Sunday", days[1] with "Monday", and so forth.

Array Bounds Checking
Most programming languages perform array bounds checking, which means they do
not allow a program to use an invalid array subscript. For example, look at the follow-
ing pseudocode:

// Create an array.
Constant Integer SIZE = 5
Declare Integer numbers[SIZE]

// ERROR! This statement uses an invalid subscript!
Set numbers[5] = 99

This pseudocode declares an array with 5 elements. The subscripts for the array’s ele-
ments are 0 through 4. The last statement will cause an error in most languages
because it attempts to assign a value in numbers[5], a nonexistent element.

292 Chapter 8 Arrays

// This code has an off-by-one error.
Constant Integer SIZE = 100;
Declare Integer numbers[SIZE]
Declare Integer index
For index = 1 To SIZE - 1

Set numbers[index] = 0
End For

The intent of this pseudocode is to create an array of integers with 100 elements, and
store the value 0 in each element. However, this code has an off-by-one error. The
loop uses its counter variable, index, as a subscript with the numbers array. During
the loop’s execution, the index variable takes on the values 1 through 99, when it
should take on the values 0 through 99. As a result, the first element, which is at sub-
script 0, is skipped.

Assuming numbers is the same array as previously declared, the following loop also
performs an off-by-one error. This loop correctly starts with the subscript 0, but it
iterates one too many times, ending with the subscript 100:

// ERROR!
For index = 0 To SIZE

Set numbers[index] = 0
End For

Because the last subscript in this array is 99, this loop will cause a bounds-checking
error.

Partially Filled Arrays
Sometimes you need to store a series of items in an array, but you do not know the
number of items in the series. As a result, you do not know the exact number of ele-
ments needed for the array. One solution is to make the array large enough to hold the
largest possible number of items. This can lead to another problem, however. If the ac-
tual number of items stored in the array is less than the number of elements, the array
will be only partially filled. When you process a partially filled array, you must process
only the elements that contain valid data items.

A partially filled array is normally used with an accompanying integer variable that
holds the number of items that are actually stored in the array. If the array is empty,
then 0 is stored in this variable because there are no items in the array. Each time an
item is added to the array, the variable is incremented. When code steps through the ar-
ray’s elements, the value of this variable is used instead of the array’s size to determine
the maximum subscript. Program 8-5 shows a demonstration.

Program 8-5

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 100
3
4 // Declare an array to hold integer values.
5 Declare Integer values[SIZE]
6
7 // Declare an Integer variable to hold the number of items

8.1 Array Basics 293

8 // that are actually stored in the array.
9 Declare Integer count = 0
10
11 // Declare an Integer variable to hold the user's input.
12 Declare Integer number
13
14 // Declare a variable to step through the array.
15 Declare Integer index
16
17 // Prompt the user to enter a number. If the user enters the
18 // sentinel value -1 we will stop accepting input.
19 Display "Enter a number or -1 to quit."
20 Input number
21
22 // If the input is not -1 and the array is not
23 // full, process the input.
24 While (number != -1 AND count < SIZE)
25 // Store the input in the array.
26 Set values[count] = number
27
28 // Increment count.
29 count = count + 1
30
31 // Prompt the user for the next number.
32 Display "Enter a number or -1 to quit."
33 Input number
34 End While
35
36 // Display the values stored in the array.
37 Display "Here are the numbers you entered:"
38 For index = 0 To count - 1
39 Display values[index]
40 End For

Program Output (with Input Shown in Bold)

Enter a number or -1 to quit.
2 [Enter]
Enter a number or -1 to quit.
4 [Enter]
Enter a number or -1 to quit.
6 [Enter]
Enter a number or -1 to quit.
-1 [Enter]
Here are the numbers you entered:
2
4
6

Let’s examine the pseudocode in detail. Line 2 declares a constant, SIZE, initialized
with the value 100. Line 5 declares an Integer array named values, using SIZE as the
size declarator. As a result, the values array will have 100 elements. Line 9 declares an
Integer variable named count, which will hold the number of items that are stored in
the values array. Notice that count is initialized with 0 because there are no values

294 Chapter 8 Arrays

stored in the array. Line 12 declares an Integer variable named number that will hold
values entered by the user, and line 15 declares an Integer variable named index that
will be used in a loop to step through the array, displaying its elements.

Line 19 prompts the user to enter a number or �1 to quit. This program uses the value
�1 as a sentinel value. When the user enters �1, the program will stop reading input.
Line 20 reads the user’s input and stores it in the number variable. A While loop begins
in line 24. The loop iterates as long as number is not �1 and count is less than the size
of the array. Inside the loop, in line 26 the numbers variable is assigned to
values[count], and in line 29 the count variable is incremented. (Each time a num-
ber is assigned to an array element, the count variable is incremented. As a result, the
count variable will hold the number of items that are stored in the array.) Then, line 32
prompts the user to enter another number (or �1 to quit) and line 33 reads the user’s
input into the number variable. The loop then starts over.

When the user enters �1, or count reaches the size of the array, the While loop stops.
The For loop that begins in line 38 displays all of the items that are stored in the array.
Rather than stepping through all of the elements in the array, however, the loop steps
through only the elements that contain values. Notice that the index variable’s starting
value is 0, and its ending value is count -1. By setting the ending value to count - 1
rather than SIZE - 1, the loop will stop when the element containing the last valid
value has been displayed, not when the end of the array has been reached.

Optional Topic: The For Each Loop
Several programming languages provide a specialized version of the For loop that is
known as the For Each loop. The For Each loop can simplify array processing when
your task is simply to step through an array, retrieving the value of each element. The
For Each loop is typically used in the following general format:

For Each var In array
statement
statement
statement
etc.

End For

In the general format, var is the name of a variable and array is the name of an array.
The loop will iterate once for every element in the array. Each time the loop iterates, it
copies an array element to the var variable. For example, the first time the loop iterates,
var will contain the value of array[0], the second time the loop iterates var will contain
the value of array[1], and so forth. This continues until the loop has stepped through all
of the elements in the array. For example, suppose we have the following declarations:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE] = 5, 10, 15, 20, 25
Declare Integer num

The following For Each loop can be used to display all of the values stored in the
numbers array:

For Each num In numbers
Display num

End For

8.2 Sequentially Searching an Array 295

NOTE: The For Each loop is not available in all languages, so we will continue to
use the regular For loop in our example programs.

Checkpoint

8.1 Can you store a mixture of data types in an array?

8.2 What is an array size declarator?

8.3 In most languages, can the size of an array be changed while the program is
running?

8.4 What is an array element?

8.5 What is a subscript?

8.6 What is usually the first subscript in an array?

8.7 Look at the following pseudocode and answer questions a through d.

Constant Integer SIZE = 7
Declare Real numbers[SIZE]

a. What is the name of the array that is being declared?

b. What is the size of the array?

c. What data type are the array elements?

d. What is the subscript of the last element in the array?

8.8 What does “array bounds checking” mean?

8.9 What is an off-by-one error?

8.2 Sequentially Searching an Array

CONCEPT: The sequential search algorithm is a simple technique for finding an
item in an array. It steps through the array, beginning at the first ele-
ment, and compares each element to the item being searched for. The
search stops when the item is found or the end of the array is reached.

Programs commonly need to search for data that is stored in an array. Various tech-
niques known as search algorithms have been developed to locate a specific item in a
larger collection of data, such as an array. This section shows you how to use the sim-
plest of all search algorithms—the sequential search. The sequential search algorithm
uses a loop to sequentially step through an array, starting with the first element. It
compares each element with the value being searched for and stops when the value is
found or the end of the array is encountered. If the value being searched for is not in
the array, the algorithm unsuccessfully searches to the end of the array.

296 Chapter 8 Arrays

Figure 8-5 shows the general logic of the sequential search algorithm. Here is a sum-
mary of the data items in the figure:

● array is the array being searched.
● searchValue is the value that the algorithm is searching for.
● found is a Boolean variable that is used as a flag. Setting found to False indi-

cates that searchValue has not been found. Setting found to True indicates that
searchValue has been found.

● index is an Integer variable used as a loop counter.

When the algorithm finishes, the found variable will be set to True if the searchValue
was found in the array. When this is the case, the index variable will be set to the

found == False
AND index <=

SIZE – 1

Set index = 0

True

False

Set found = False

array[index] ==
searchValue

True

Set found = True

False

Set index = index + 1

Figure 8-5 Sequential search logic

8.2 Sequentially Searching an Array 297

subscript of the element containing the searchValue. If the searchValue was not
found in the array, found will be set to False. The following shows how you can ex-
press this logic in pseudocode:

Set found = False
Set index = 0
While found == False AND index <= SIZE – 1

If array[index] == searchValue Then
Set found = True

Else
Set index = index + 1

End If
End While

The pseudocode in Program 8-6 demonstrates how to implement the sequential search
in a program. This program has an array that holds test scores. It sequentially searches
the array for a score of 100. If a score of 100 is found, the program displays the test
number.

Program 8-6

1 // Constant for the array size.
2 Constant Integer SIZE = 10
3
4 // Declare an array to hold test scores.
5 Declare Integer scores[SIZE] = 87, 75, 98, 100, 82,
6 72, 88, 92, 60, 78
7
8 // Declare a Boolean variable to act as a flag.
9 Declare Boolean found
10
11 // Declare a variable to use as a loop counter.
12 Declare Integer index
13
14 // The flag must initially be set to False.
15 Set found = False
16
17 // Set the counter variable to 0.
18 Set index = 0
19
20 // Step through the array searching for a
21 // score equal to 100.
22 While found == False AND index <= SIZE - 1
23 If scores[index] == 100 Then
24 Set found = True
25 Else
26 Set index = index + 1
27 End If
28 End While
29

298 Chapter 8 Arrays

30 // Display the search results.
31 If found Then
32 Display "You earned 100 on test number ", index + 1
33 Else
34 Display "You did not earn 100 on any test."
35 End If

Program Output

You earned 100 on test number 4

Searching a String Array
Program 8-6 demonstrates how to use the sequential search algorithm to find a specific
number in an Integer array. As shown in Program 8-7, you can also use the algorithm
to find a string in a String array.

Program 8-7

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 6
3
4 // Declare a String array initialized with values.
5 Declare String names[SIZE] = "Ava Fischer", "Chris Rich",
6 "Gordon Pike", "Matt Hoyle",
7 "Rose Harrison", "Giovanni Ricci"
8
9 // Declare a variable to hold the search value.
10 Declare String searchValue
11
12 // Declare a Boolean variable to act as a flag.
13 Declare Boolean found
14
15 // Declare a counter variable for the array.
16 Declare Integer index
17
18 // The flag must initially be set to False.
19 Set found = False
20
21 // Set the counter variable to 0.
22 Set index = 0
23
24 // Get the string to search for.
25 Display "Enter a name to search for in the array."
26 Input searchValue
27
28 // Step through the array searching for
29 // the specified name.
30 While found == False AND index <= SIZE - 1
31 If names[index] == searchValue Then

8.2 Sequentially Searching an Array 299

32 Set found = True
33 Else
34 Set index = index + 1
35 End If
36 End While
37
38 // Display the search results.
39 If found Then
40 Display "That name was found at subscript ", index
41 Else
42 Display "That name was not found in the array."
43 End If

Program Output (with Input Shown in Bold)

Enter a name to search for in the array.
Matt Hoyle [Enter]
That name was found at subscript 3

Program Output (with Input Shown in Bold)

Enter a name to search for in the array.
Matt [Enter]
That name was not found in the array.

This program finds a string in the array only if the user types the complete string,
exactly as it appears in the array. For example, in the first sample run the user enters
“Matt Hoyle” as the search string and the program locates it at subscript 3. But, in the
second sample run the user enters “Matt” and the program reports that the name was
not found in the array. This is because the string "Matt" is not equal to the string
"Matt Hoyle".

Often, programs must be designed to search for partial string matches. Most languages
provide a library function that can determine whether a string partially matches
another string. In pseudocode you can use the contains function to implement this.
Recall from Chapter 6 that the contains function accepts two strings as arguments,
and it returns True if the first string contains the second string; otherwise, the function
returns False. The pseudocode in Program 8-8 shows how you can modify Program
8-7 to use the contains function. This version of the program will find strings in the
array that partially match the string entered by the user.

Program 8-8

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 6
3
4 // Declare a String array initialized with values.
5 Declare String names[SIZE] = "Ava Fischer", "Chris Rich",
6 "Gordon Pike", "Matt Hoyle",
7 "Rose Harrison", "Giovanni Ricci"

300 Chapter 8 Arrays

8
9 // Declare a variable to hold the search value.
10 Declare String searchValue
11
12 // Declare a Boolean variable to act as a flag.
13 Declare Boolean found
14
15 // Declare a counter variable for the array.
16 Declare Integer index
17
18 // The flag must initially be set to False.
19 Set found = False
20
21 // Set the counter variable to 0.
22 Set index = 0
23
24 // Get the string to search for.
25 Display "Enter a name to search for in the array."
26 Input searchValue
27
28 // Step through the array searching for
29 // the specified name.
30 While found == False AND index <= SIZE - 1
31 If contains(names[index], searchValue) Then
32 Set found = True
33 Else
34 Set index = index + 1
35 End If
36 End While
37
38 // Display the search results.
39 If found Then
40 Display "That name matches the following element:"
41 Display names[index]
42 Else
43 Display "That name was not found in the array."
44 End If

Program Output (with Input Shown in Bold)

Enter a name to search for in the array.
Matt [Enter]
That name matches the following element:
Matt Hoyle

Checkpoint

8.10 What is a search algorithm?

8.11 Which array element does the sequential search algorithm first look at?

8.12 What does the loop do in the sequential search algorithm? What happens
when the value being searched for is found?

8.3 Processing the Contents of an Array 301

8.13 How many elements does the sequential search algorithm look at in the case
that the search value is not found in the array?

8.14 How do you look for a partial string match when searching an array of strings
for a value?

8.3 Processing the Contents of an Array
In this chapter you’ve seen several examples of how loops are used to step through the
elements of an array. There are many operations that you can perform on an array us-
ing a loop, and this section examines several such algorithms.

Totaling the Values in an Array
To calculate the total of the values in an array, you use a loop with an accumulator
variable. The loop steps through the array, adding the value of each array element to
the accumulator. Figure 8-6 shows the logic of the algorithm. In the algorithm total is
an accumulator variable, index is a loop counter, and array is an array containing
numeric values.

index <= SIZE – 1

Set index = 0

True

False

Set total = 0

Set index = index + 1Set total = total +
array[index]

Figure 8-6 Algorithm for totaling the values in an array

302 Chapter 8 Arrays

The pseudocode in Program 8-9 demonstrates the algorithm with an Integer array
named numbers.

Program 8-9

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 5
3
4 // Declare an array initialized with values.
5 Declare Integer numbers[SIZE] = 2, 4, 6, 8, 10
6
7 // Declare and initialize an accumulator variable.
8 Declare Integer total = 0
9
10 // Declare a counter variable for the loop.
11 Declare Integer index
12
13 // Calculate the total of the array elements.
14 For index = 0 To SIZE - 1
15 Set total = total + numbers[index]
16 End For
17
18 // Display the sum of the array elements.
19 Display "The sum of the array elements is ", total

Program Output

The sum of the array elements is 30

Averaging the Values in an Array
The first step in calculating the average of the values in an array is to get the total of the
values. You saw how to do that with a loop in the preceding section. The second step
is to divide the total by the number of elements in the array. The pseudocode in
Program 8-10 demonstrates the algorithm.

Program 8-10

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 5
3
4 // Declare an array initialized with values.
5 Declare Real scores[SIZE] = 2.5, 8.3, 6.5, 4.0, 5.2
6
7 // Declare and initialize an accumulator variable.
8 Declare Real total = 0
9
10 // Declare a variable to hold the average.
11 Declare Real average
12
13 // Declare a counter variable for the loop.

8.3 Processing the Contents of an Array 303

14 Declare Integer index
15
16 // Calculate the total of the array elements.
17 For index = 0 To SIZE - 1
18 Set total = total + numbers[index]
19 End For
20
21 // Calculate the average of the array elements.
22 Set average = total / SIZE
23
24 // Display the average of the array elements.
25 Display "The average of the array elements is ", average

Program Output

The average of the array elements is 5.3

Finding the Highest Value in an Array
Some programming tasks require you to find the highest value in a set of data. Exam-
ples include programs that report the highest sales amount for a given time period, the
highest test score in a set of test scores, the highest temperature for a given set of days,
and so forth.

The algorithm for finding the highest value in an array works like this: You create a
variable to hold the highest value (the following examples name this variable
highest). Then, you assign the value at element 0 to the highest variable. Next, you
use a loop to step through the rest of the array elements, beginning at element 1. Each
time the loop iterates, it compares an array element to the highest variable. If the
array element is greater than the highest variable, then the value in the array ele-
ment is assigned to the highest variable. When the loop finishes, the highest vari-
able will contain the highest value in the array. The flowchart in Figure 8-7 illustrates
this logic. The pseudocode in Program 8-11 shows a simple demonstration of the
algorithm.

Program 8-11

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 5
3
4 // Declare an array initialized with values.
5 Declare Integer numbers[SIZE] = 8, 1, 12, 6, 2
6
7 // Declare a counter variable for the array.
8 Declare Integer index
9
10 // Declare a variable to hold the highest value.
11 Declare Integer highest
12
13 // Assign the first element to highest.
14 Set highest = numbers[0]
15

304 Chapter 8 Arrays

16 // Step through the rest of the array,
17 // beginning at element 1. When a value
18 // greater than highest is found, assign
19 // that value to highest.
20 For index = 1 To SIZE - 1
21 If numbers[index] > highest Then
22 Set highest = numbers[index]
23 End If
24 End For
25
26 // Display the highest value.
27 Display "The highest value in the array is ", highest

Program Output

The highest value in the array is 12

index <= SIZE – 1

Set index = 1

True

False

Set highest = array[0]

array[index] >
highest

True

Set highest = array[index]
False

Set index = index + 1

Figure 8-7 Flowchart for finding the highest value in an array

8.3 Processing the Contents of an Array 305

Finding the Lowest Value in an Array
In some programs you are more interested in finding the lowest value than the highest
value in a set of data. For example, suppose you are designing a program that stores
several players’ golf scores in an array and you need to find the best score. In golf, the
lower the score the better, so you would need an algorithm that finds the lowest value
in the array.

The algorithm for finding the lowest value in an array is very similar to the algorithm
for finding the highest score. It works like this: You create a variable to hold the lowest
value (the following examples name this variable lowest). Then, you assign the value
at element 0 to the lowest variable. Next, you use a loop to step through the rest of
the array elements, beginning at element 1. Each time the loop iterates, it compares an
array element to the lowest variable. If the array element is less than the lowest vari-
able, then the value in the array element is assigned to the lowest variable. When the
loop finishes, the lowest variable will contain the lowest value in the array. The flow-
chart in Figure 8-8 illustrates this logic. The pseudocode in Program 8-12 shows a sim-
ple demonstration of the algorithm.

index <= SIZE – 1

Set index = 1

True

False

Set lowest = array[0]

array[index] <
lowest

True

Set lowest = array[index]

False

Set index = index + 1

Figure 8-8 Flowchart for finding the lowest value in an array

306 Chapter 8 Arrays

Program 8-12

1 // Declare a constant for the array size.
2 Constant Integer SIZE = 5
3
4 // Declare an array initialized with values.
5 Declare Integer numbers[SIZE] = 8, 1, 12, 6, 2
6
7 // Declare a counter variable for the array.
8 Declare Integer index
9
10 // Declare a variable to hold the lowest value.
11 Declare Integer lowest
12
13 // Assign the first element to lowest.
14 Set lowest = numbers[0]
15
16 // Step through the rest of the array,
17 // beginning at element 1. When a value
18 // less than lowest is found, assign
19 // that value to lowest.
20 For index = 1 To SIZE - 1
21 If numbers[index] < lowest Then
22 Set lowest = numbers[index]
23 End If
24 End For
25
26 // Display the lowest value.
27 Display "The lowest value in the array is ", lowest

Program Output

The lowest value in the array is 1

Copying an Array
In most programming languages, if you need to copy the contents of one array to an-
other you have to assign the individual elements of the array that you are copying to
the elements of the other array. Usually, this is best done with a loop. For example,
look at the following pseudocode:

Constant Integer SIZE = 5
Declare Integer firstArray[SIZE] = 100, 200, 300, 400, 500
Declare Integer secondArray[SIZE]

Suppose you want to copy the values in firstArray to secondArray. The following
pseudocode assigns each element of firstArray to the corresponding element in
secondArray.

Declare Integer index
For index = 0 To SIZE – 1

Set secondArray[index] = firstArray[index]
End For

8.3 Processing the Contents of an Array 307

Passing an Array as an Argument
to a Module or a Function
Most languages allow you to pass an array as an argument to a module or a function.
This gives you the ability to modularize many of the operations that you perform on an
array. Passing an array as an argument typically requires that you pass two arguments:
(1) the array itself, and (2) an integer that specifies the number of elements in the array.
The pseudocode in Program 8-13 shows an example of a function that accepts an
Integer array as an argument. The function returns the total of the array’s elements.

Program 8-13

1 Module main()
2 // A constant for the array size.
3 Constant Integer SIZE = 5
4
5 // An array initialized with values.
6 Declare Integer numbers[SIZE] = 2, 4, 6, 8, 10
7
8 // A variable to hold the sum of the elements.
9 Declare Integer sum
10
11 // Get the sum of the elements.
12 Set sum = getTotal(numbers, SIZE)
13
14 // Display the sum of the array elements.
15 Display "The sum of the array elements is ", sum
16 End Module
17
18 // The getTotal function accepts an Integer array and the
19 // array's size as arguments. It returns the total of the
20 // array elements.
21 Function Integer getTotal(Integer array[], Integer arraySize)
22 // Loop counter
23 Declare Integer index
24
25 // Accumulator, initialized to 0
26 Declare Integer total = 0
27
28 // Calculate the total of the array elements.
29 For index = 0 To arraySize - 1
30 Set total = total + array[index]
31 End For
32
33 // Return the total.
34 Return total
35 End Function

Program Output

The sum of the array elements is 30

308 Chapter 8 Arrays

In the main module, an Integer array is declared in line 6 and initialized with five val-
ues. In line 12, the following statement calls the getTotal function and assigns its re-
turn value to the sum variable:

Set sum = getTotal(numbers, SIZE)

This statement passes two arguments to the getTotal function: the numbers array and
the value of the SIZE constant. Here is the first line of the getTotal function, which
appears in line 21:

Function Integer getTotal(Integer array[], Integer arraySize)

Notice that the function has the following two parameters.

● Integer array[]—This parameter accepts an array of Integers as an
argument.

● Integer arraySize—This parameter accepts an Integer that specifies the
number of elements in the array.

When the function is called in line 12, it passes the numbers array into the array
parameter, and the value of the SIZE constant into the arraySize parameter. This is
shown in Figure 8-9. The function then calculates the total of the values in array and
returns that value.

Function Integer getTotal(Integer array[], Integer arraySize)

Set sum = getTotal(numbers, SIZE)

2 4 6 8 10 5

Figure 8-9 Passing arguments to the getTotal function

In the Spotlight:
Processing an Array
Dr. LaClaire gives four exams during the semester in her chemistry class. At the end of
the semester she drops each student’s lowest test score before averaging the scores. She
has asked you to design a program that will read a student’s four test scores as input,
and calculate the average with the lowest score dropped. Here is the algorithm that you
developed:

1. Read the student’s four test scores.
2. Calculate the total of the scores.
3. Find the lowest score.
4. Subtract the lowest score from the total. This gives the adjusted total.
5. Divide the adjusted total by 3. This is the average.
6. Display the average.

8.3 Processing the Contents of an Array 309

Program 8-14 shows the pseudocode for the program, which is modularized. Rather
than presenting the entire program at once, let’s first examine the main module, and
then each additional module and function separately. Here is the main module:

Program 8-14 Score calculation program: main module

1 Module main()
2 // Constant for the array size.
3 Constant Integer SIZE = 4
4
5 // Array to hold test scores.
6 Declare Real testScores[SIZE]
7
8 // Variable to hold the total of scores.
9 Declare Real total
10
11 // Variable to hold the lowest score.
12 Declare Real lowestScore
13
14 // Variable to hold the average score.
15 Declare Real average
16
17 // Get the test scores from the user.
18 Call getTestScores(testScores, SIZE)
19
20 // Get the total of the test scores.
21 Set total = getTotal(testScores, SIZE)
22
23 // Get the lowest test score.
24 Set lowestScore = getLowest(testScores, SIZE)
25
26 // Subtract the lowest score from the total.
27 Set total = total - lowestScore
28
29 // Calculate the average. Divide by 3
30 // because the lowest score was dropped.
31 Set average = total / (SIZE – 1)
32
33 // Display the average.
34 Display "The average with the lowest score"
35 Display "dropped is ", average
36 End Module
37

Lines 3 through 15 declare the following items:

● SIZE, a constant that is used as an array size declarator
● testScores, a Real array to hold the test scores
● total, a Real variable that will hold the test score totals
● lowestScore, a Real variable that will hold the lowest test score
● average, a Real variable that will hold the average of the test scores

310 Chapter 8 Arrays

Line 18 calls the getTestScores module, passing the testScores array and the value
of the SIZE constant as arguments. As you will see in a moment, the testScores array
is passed by reference. The module gets the test scores from the user and stores them in
the array.

Line 21 calls the getTotal module, passing the testScores array and the value of the
SIZE constant as arguments. The function returns the total of the values in the array.
This value is assigned to the total variable.

Line 24 calls the getLowest function, passing the testScores array and the value of
the SIZE constant as arguments. The function returns the lowest value in the array.
This value is assigned to the lowestScore variable.

Line 27 subtracts the lowest test score from the total variable. Then, line 31 calcu-
lates the average by dividing total by SIZE – 1. (The program divides by SIZE – 1
because the lowest test score was dropped.) Lines 34 and 35 display the average.
Figure 8-10 shows a flowchart for the main module.

main()

getTestScores
(testScores, SIZE)

Set total =
getTotal(testScores, SIZE)

Set lowestScore =
getLowest(testScores,

SIZE)

A

Set total = total -
lowestScore

Set average = total /
(SIZE - 1)

End

A

Display "The average
with the lowest score"

Display "dropped is ",
average

Constant Integer SIZE = 4
Declare Real testScores[SIZE]

Declare Real total
Declare Real lowestScore

Declare Real average

Figure 8-10 Flowchart for the main module

Next is the getTestScores module definition.

8.3 Processing the Contents of an Array 311

Program 8-14 Score calculation program (continued):
getTestScores module

38 // The getTestScores module accepts an array (by reference)
39 // and its size as arguments. It prompts the user to enter
40 // test scores, which are stored in the array.
41 Module getTestScores(Real Ref scores[], Integer arraySize)
42 // Loop counter
43 Declare Integer index
44
45 // Get each test score.
46 For index = 0 To arraySize - 1
47 Display "Enter test score number ", index + 1
48 Input scores[index]
49 End For
50 End Module
51

The getTestScores module has two parameters:

● scores[]—A Real array is passed by reference into this parameter.
● arraySize—An Integer specifying the size of the array is passed into this

parameter.

The purpose of this module is to get a student’s test scores from the user and store them
in the array that is passed as an argument into the scores[] parameter. Figure 8-11
shows a flowchart for this module.

The getTotal function definition appears next.

Program 8-14 Score calculation program (continued):
getTotal function

52 // The getTotal function accepts a Real array and its
53 // size as arguments. It returns the total of the
54 // array elements.
55 Function Real getTotal(Real array[], Integer arraySize)
56 // Loop counter
57 Declare Integer index
58
59 // Accumulator, initialized to 0
60 Declare Real total = 0
61
62 // Calculate the total of the array elements.
63 For index = 0 To arraySize - 1
64 Set total = total + array[index]
65 End For
66
67 // Return the total.
68 Return total
69 End Function
70

The getTotal function has two parameters:

● array[]—A Real array
● arraySize—An Integer specifying the size of the array

This function returns the total of the values in the array that is passed as an argument
into the array[] parameter. Figure 8-12 shows a flowchart for this module.

False

True

getTestScores
(Real Ref scores[],
Integer arraySize)

Declare Integer index

Return

index <=
arraySize – 1

Set index = index + 1

Display "Enter test
score number ", index + 1

Input scores[index]

Set index = 0

Figure 8-11 Flowchart for the getTestScores module

312 Chapter 8 Arrays

8.3 Processing the Contents of an Array 313

Program 8-14 Score calculation program (continued):
getLowest function

71 // The getLowest function accepts a Real array and its
72 // size as arguments and returns the lowest value in
73 // the array.
74 Function Real getLowest(Real array[], Integer arraySize)
75 // Variable to hold the lowest value.
76 Declare Real lowest
77
78 // Loop counter
79 Declare Integer index
80
81 // Get the first element of the array.
82 Set lowest = array[0]
83
84 // Step through the rest of the array. When a value
85 // less than lowest is found, assign it to lowest.
86 For index = 1 To arraySize - 1
87 If array[index] < lowest Then

True

False

index <=
arraySize – 1

Set index = 0

Set index = index + 1Set total = total +
array[index]

getTotal
(Real array[],

Integer arraySize)

Declare Integer index
Declare Real total = 0

Return total

Figure 8-12 Flowchart for the getTotal function

The program continues by defining the getLowest function.

314 Chapter 8 Arrays

88 Set lowest = array[index]
89 End If
90 End For
91
92 // Return the lowest value.
93 Return lowest
94 End Function

True

False

True

False

Return lowest

index <=
arraySize – 1

Set index = 1

Set lowest = array[0]

array[index] <
lowest

Set lowest = array[index]

Set index = index + 1

getLowest
(Real array[],

Integer arraySize)

Declare Real lowest
Declare Integer index

Figure 8-13 Flowchart for the getLowest function

The getlowest function has two parameters:

● array[]—A Real array
● arraySize—An Integer specifying the size of the array

This function returns the lowest value in the array that is passed as an argument into
the array[] parameter. Figure 8-13 shows a flowchart for this module.

8.4 Parallel Arrays 315

Program Output (with Input Shown in Bold)

Enter test score number 1
92 [Enter]
Enter test score number 2
67 [Enter]
Enter test score number 3
75 [Enter]
Enter test score number 4
88 [Enter]
The average with the lowest score
dropped is 85

Checkpoint

8.15 Briefly describe how you calculate the total of the values in an array.

8.16 Briefly describe how you get the average of the values in an array.

8.17 Describe the algorithm for finding the highest value in an array.

8.18 Describe the algorithm for finding the lowest value in an array.

8.19 How do you copy the contents of one array to another array?

8.4 Parallel Arrays

CONCEPT: By using the same subscript, you can establish relationships between
data stored in two or more arrays.

Sometimes it is useful to store related data in two or more arrays. For example, assume
you have designed a program with the following array declarations:

Constant Integer SIZE = 5
Declare String names[SIZE]
Declare String addresses[SIZE]

The names array stores the names of five people, and the addresses array stores the
addresses of the same five people. The data for each person is stored in the same rela-
tive location in each array. For instance, the first person’s name is stored in names[0],
and that same person’s address is stored in addresses[0]. Figure 8-14 illustrates this.

To access the data, you use the same subscript with both arrays. For example, the loop
in the following pseudocode displays each person’s name and address:

Declare Integer index
For index = 0 To SIZE – 1

Display names[index]
Display addresses[index]

End For

Parallel Arrays

VideoNote

316 Chapter 8 Arrays

Person
#1

Person
#2

Person
#3

Person
#4

Person
#5

names[0]

addresses
[0]

names[1] names[2] names[3] names[4]

addresses
[1]

addresses
[4]

addresses
[2]

addresses
[3]

Figure 8-14 The names and addresses arrays

The names and addresses arrays are examples of parallel arrays. Parallel arrays are
two or more arrays that hold related data, and the related elements in each array are
accessed with a common subscript.

In the Spotlight:
Using Parallel Arrays
In this chapter’s first In the Spotlight section (see Program 8-4), Megan asked you to
design a program that allows her to enter the number of hours worked by each of her
employees and then displays each employee’s gross pay. As it is currently designed, the
program refers to the employees as “employee 1,” employee 2,” and so on. Megan has
asked you to modify the program so she can enter employees’ names along with their
hours, and then it should display each employee’s name along with his or her gross pay.

Currently, the program has an array named hours that holds each employee’s hours
worked. You decide to add a parallel array named names that will hold each em-
ployee’s name. The first employee’s data will appear in names[0] and in hours[0], the
second employee’s data will appear in names[1] and in hours[1], and so on.

Here is the updated algorithm:

1. For each employee:
a. Get the employee’s name and store it in the names array.
b. Get the employee’s number of hours worked and store it in the corresponding

element of the hours array.
2. Step through each set of elements in the parallel arrays and display the employee’s

name and gross pay.

Program 8-15 shows the pseudocode for the revised program, and Figure 8-15 shows a
flowchart.

8.4 Parallel Arrays 317

Program 8-15

1 // Constant for the array sizes.
2 Constant Integer SIZE = 6
3
4 // Array to hold each employee's name.
5 Declare String names[SIZE]
6
7 // Array to hold each employee's hours.
8 Declare Real hours[SIZE]
9
10 // Variable to hold the hourly pay rate.
11 Declare Real payRate
12
13 // Variable to hold a gross pay amount.
14 Declare Real grossPay
15
16 // Variable to use as a loop counter.
17 Declare Integer index
18
19 // Get each employee's data.
20 For index = 0 To SIZE - 1
21 // Get an employee's name.
22 Display "Enter the name of employee ", index + 1
23 Input names[index]
24
25 // Get the employee's hours.
26 Display "Enter the hours worked by that employee."
27 Input hours[index]
28 End For
29
30 // Get the hourly pay rate.
31 Display “Enter the hourly pay rate.”
32 Input payRate
33
34 // Display each employee's gross pay.
35 Display "Here is each employee's gross pay."
36 For index = 0 To SIZE - 1
37 Set grossPay = hours[index] * payRate
38 Display names[index], ": ", currencyFormat(grossPay)
39 End For

Program Output (with Input Shown in Bold)

Enter the name of employee 1
Jamie Lynn [Enter]
Enter the hours worked by that employee.
10 [Enter]
Enter the name of employee 2
Courtney [Enter]
Enter the hours worked by that employee.
20 [Enter]
Enter the name of employee 3
Ashley [Enter]
Enter the hours worked by that employee.

318 Chapter 8 Arrays

15 [Enter]
Enter the name of employee 4
Brian [Enter]
Enter the hours worked by that employee.
40 [Enter]
Enter the name of employee 5
Jane [Enter]
Enter the hours worked by that employee.
20 [Enter]
Enter the name of employee 6
Ian [Enter]
Enter the hours worked by that employee.
18 [Enter]
Enter the hourly pay rate.
12.75 [Enter]
Here is each employee's gross pay.
Jamie Lynn: $127.50
Courtney: $255.00
Ashley: $191.25
Brian: $510.00
Jane: $255.00
Ian: $229.50

Start

index <=
SIZE – 1

Constant Integer SIZE = 6
Declare String names[SIZE]
Declare Real hours[SIZE]

Declare Real payRate
Declare Real grossPay
Declare Integer index

Set index = 0

True

False
Input hours[index]

Display "Enter the
hours worked by
that employee."

Display "Enter the
name of employee ",

index + 1
Input names[index]

A Set index = index + 1

Figure 8-15 Flowchart for Program 8-15

8.5 Two-Dimensional Arrays 319

Figure 8-15 (continued)

End

Display names[index],
": ", currencyFormat

(grossPay)

index <=
SIZE - 1

Set index = 0

True

False

Set grossPay =
hours[index] * payRate

A

Display "Enter the
hourly pay rate."

Input payRate

Set index = index + 1

Display "Here is each
employee’s gross pay."

Checkpoint

8.20 How do you establish a relationship between the data stored in two parallel arrays?

8.21 A program uses two parallel arrays: names and creditScore. The names
array holds customer names and the creditScore array holds customer credit
scores. If a particular customer’s name is stored in names[82], where would
that customer’s credit score be stored?

8.5 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It
is useful for storing multiple sets of data.

The arrays that you have studied so far are known as one-dimensional arrays. They are
called one dimensional because they can hold only one set of data. Two-dimensional

320 Chapter 8 Arrays

arrays, which are also called 2D arrays, can hold multiple sets of data. Think of a two-
dimensional array as having rows and columns of elements, as shown in Figure 8-16.
This figure shows a two-dimensional array having three rows and four columns.
Notice that the rows are numbered 0, 1, and 2, and the columns are numbered 0, 1, 2,
and 3. There is a total of twelve elements in the array.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Figure 8-16 A two-dimensional array

Two-dimensional arrays are useful for working with multiple sets of data. For exam-
ple, suppose you are designing a grade-averaging program for a teacher. The teacher
has six students, and each student takes five exams during the semester. One approach
would be to create six one-dimensional arrays, one for each student. Each of these ar-
rays would have five elements, one for each exam score. This approach would be cum-
bersome, however, because you would have to separately process each of the arrays. A
better approach would be to use a two-dimensional array with six rows (one for each
student) and five columns (one for each exam score), as shown in Figure 8-17.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Row 3

Row 4

Row 5

Column 4

This row is for student #1

This column
contains

 scores for
exam #1

This column
contains

 scores for
exam #2

This column
contains

 scores for
exam #3

This column
contains

 scores for
exam #4

This column
contains

 scores for
exam #5

This row is for student #2

This row is for student #3

This row is for student #4

This row is for student #5

This row is for student #6

Figure 8-17 Two-dimensional array with six rows and five columns

8.5 Two-Dimensional Arrays 321

Declaring a Two-Dimensional Array
To declare a two-dimensional array, two size declarators are required: The first one is
for the number of rows and the second one is for the number of columns. The follow-
ing pseudocode shows an example of how to declare a two-dimensional array:

Declare Integer values[3][4]

This statement declares a two-dimensional Integer array with three rows and four
columns. The name of the array is values, and there are a total of twelve elements in
the array. As with one-dimensional arrays, it is best to use named constants as the size
declarators. Here is an example:

Constant Integer ROWS = 3
Constant Integer COLS = 4
Declare Integer values[ROWS][COLS]

When processing the data in a two-dimensional array, each element has two subscripts:
one for its row and another for its column. In the values array, the elements in row 0
are referenced as follows:

values[0][0]
values[0][1]
values[0][2]
values[0][3]

The elements in row 1 are as follows:

values[1][0]
values[1][1]
values[1][2]
values[1][3]

And the elements in row 2 are as follows:

values[2][0]
values[2][1]
values[2][2]
values[2][3]

Figure 8-18 illustrates the array with the subscripts shown for each element.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

values[0][0]

values[1][0]

values[2][0]

values[0][1]

values[1][1]

values[2][1]

values[0][2]

values[1][2]

values[2][2]

values[0][3]

values[1][3]

values[2][3]

Figure 8-18 Subscripts for each element of the values array

322 Chapter 8 Arrays

Accessing the Elements in
a Two-Dimensional Array
To access one of the elements in a two-dimensional array, you must use both sub-
scripts. For example, the following pseudocode statement assigns the number 95 to
values[2][1]:

Set values[2][1] = 95

Programs that process two-dimensional arrays commonly do so with nested loops. The
pseudocode in Program 8-16 shows an example. It declares an array with three rows
and four columns, prompts the user for values to store in each element, and then
displays the values in each element.

Program 8-16

1 // Create a 2D array.
2 Constant Integer ROWS = 3
3 Constant Integer COLS = 4
4 Declare Integer values[ROWS][COLS]
5
6 // Counter variables for rows and columns.
7 Declare Integer row, col
8
9 // Get values to store in the array.
10 For row = 0 To ROWS - 1
11 For col = 0 To COLS - 1
12 Display "Enter a number."
13 Input values[row][col]
14 End For
15 End For
16
17 // Display the values in the array.
18 Display "Here are the values you entered."
19 For row = 0 To ROWS - 1
20 For col = 0 To COLS - 1
21 Display values[row][col]
22 End For
23 End For

Program Output (with Input Shown in Bold)

Enter a number.
1 [Enter]
Enter a number.
2 [Enter]
Enter a number.
3 [Enter]
Enter a number.
4 [Enter]
Enter a number.
5 [Enter]
Enter a number.
6 [Enter]

8.5 Two-Dimensional Arrays 323

Here are the values you entered.
1
2
3
4
5
6

TIP : Most languages allow you to initialize a two-dimensional array with data
when you declare the array. The syntax varies from language to language. Here is an
example of how you can initialize a two-dimensional array in pseudocode:

Declare Integer testScores[3][4] = 88, 72, 90, 92,
67, 72, 91, 85,
79, 65, 72, 84

In this declaration the value 88 is stored in testScores[0][0], the value 72 is
stored in testScores[0][1], the value 90 is stored in testScores[0][2], and so
forth.

The following In the Spotlight section shows another example of a two-dimensional
array. This program adds all of the elements of a two-dimensional array to an
accumulator.

In the Spotlight:
Using a Two-Dimensional Array
Unique Candy Inc. has three divisions: division 1 (East Coast), division 2 (Midwest),
and division 3 (West Coast). The sales manager has asked you to design a program that
will read as input each division’s sales for each quarter of the year, and then display the
total sales for all divisions.

This program requires you to process three sets of data:

● The sales amounts for division 1
● The sales amounts for division 2
● The sales amounts for division 3

Each of these sets of data contains four items:

● The sales for quarter 1
● The sales for quarter 2
● The sales for quarter 3
● The sales for quarter 4

You decide to store the sales amounts in a two-dimensional array. The array will have
three rows (one for each division) and four columns (one for each quarter). Figure 8-19
shows how the sales data will be organized in the array.

324 Chapter 8 Arrays

The program will use a pair of nested loops to read the sales amounts. It will then use
a pair of nested loops to add all of the array elements to an accumulator variable. Here
is an overview of the algorithm:

1. For each division:
For each quarter:

Read the amount of sales for the quarter and store it in the array.
2. For each row in the array:

For each column in the array:
Add the amount in the column to an accumulator.

3. Display the amount in the accumulator.

Program 8-17 shows the pseudocode for the program.

Program 8-17

1 // Constants for the array sizes.
2 Constant Integer ROWS = 3
3 Constant Integer COLS = 4
4
5 // An array to hold company sales.
6 Declare Real sales[ROWS][COLS]
7
8 // Counter variables
9 Declare Integer row, col
10
11 // Accumulator
12 Declare Real total = 0
13
14 // Display instructions.
15 Display "This program calculates the company's"
16 Display "total sales. Enter the quarterly sales"
17 Display "amounts for each division when prompted."
18
19 // Nested loops to fill the array with quarterly

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

sales[0][3]

sales[1][3]

sales[2][3]

Holds data for
division 1, quarter 1

Holds data for
division 1, quarter 2

Holds data for
division 1, quarter 3

Holds data for
division 1, quarter 4

Holds data for
division 2, quarter 1

Holds data for
division 2, quarter 2

Holds data for
division 2, quarter 3

Holds data for
division 2, quarter 4

Holds data for
division 3, quarter 1

Holds data for
division 3, quarter 2

Holds data for
division 3, quarter 3

Holds data for
division 3, quarter 4

sales[0][0] sales[0][1] sales[0][2]

sales[1][0] sales[1][1] sales[1][2]

sales[2][0] sales[2][1] sales[2][2]

Figure 8-19 Two-dimensional array to hold sales data

8.5 Two-Dimensional Arrays 325

20 // sales amounts for each division.
21 For row = 0 To ROWS - 1
22 For col = 0 To COLS - 1
23 Display "Division ", row + 1, " quarter ", col + 1
24 Input sales[row][col]
25 End For
26 // Display a blank line.
27 Display
28 End For
29
30 // Nested loops to add all of the array elements.
31 For row = 0 To ROWS - 1
32 For col = 0 To COLS - 1
33 Set total = total + sales[row][col]
34 End For
35 End For
36
37 // Display the total sales.
38 Display "The total company sales are: $",
39 currencyFormat(total)

Program Output (with Input Shown in Bold)

This program calculates the company's total sales. Enter the quarterly sales
amounts for each division when prompted.

Division 1 quarter 1
1000.00 [Enter]
Division 1 quarter 2
1100.00 [Enter]
Division 1 quarter 3
1200.00 [Enter]
Division 1 quarter 4
1300.00 [Enter]

Division 2 quarter 1
2000.00 [Enter]
Division 2 quarter 2
2100.00 [Enter]
Division 2 quarter 3
2200.00 [Enter]
Division 2 quarter 4
2300.00 [Enter]

Division 3 quarter 1
3000.00 [Enter]
Division 3 quarter 2
3100.00 [Enter]
Division 3 quarter 3
3200.00 [Enter]
Division 3 quarter 4
3300.00 [Enter]

The total company sales are: $25,800.00

326 Chapter 8 Arrays

The first set of nested loops appears in lines 21 through 28. This part of the program
prompts the user for each quarter’s sales amount for each division. Figure 8-20 shows
a flowchart for this set of loops.

True

False

False

row <= ROWS – 1

col <= COLS – 1

Display "Division ", row +
1, " quarter ", col + 1

Input sales[row][col]

Set col = col + 1

Set col = 0

Display a blank line

Set row = 0

Set row = row + 1

True

Figure 8-20 Flowchart for the first set of nested loops (lines 21 through 28)

8.5 Two-Dimensional Arrays 327

The second set of nested loops appears in lines 31 through 35. This part of the program
steps through the sales array, adding the value of each element to the total variable,
which is an accumulator. Figure 8-21 shows a flowchart for this set of loops. After
these loops finish running, the total variable will contain the total of all the elements
in the sales array.

row <= ROWS – 1

col <= COLS – 1

Set col = col + 1

Set col = 0

True

False

Set row = 0

False

Set row = row + 1

Set total = total +
sales[row][col]

True

Figure 8-21 Flowchart for the second set of nested loops (lines 31 through 35)

Checkpoint

8.22 How many rows and how many columns are in the following array?

Declare Integer points[88][100]

8.23 Write a pseudocode statement that assigns the value 100 to the very last
element in the points array declared in Checkpoint 8.22.

328 Chapter 8 Arrays

8.24 Write a pseudocode declaration for a two-dimensional array initialized with
the following table of data:

12 24 32 21 42
14 67 87 65 90
19 1 24 12 8

8.25 Assume a program has the following declarations:
Constant Integer ROWS = 100
Constant Integer COLS = 50
Declare Integer info[ROWS][COLS]

Write pseudocode with a set of nested loops that store the value 99 in each
element of the info array.

8.6 Arrays of Three or More Dimensions

CONCEPT: To model data that occurs in multiple sets, most languages allow you to
create arrays with multiple dimensions.

In the last section you saw examples of two-dimensional arrays. Most languages also
allow you to create arrays with three or more dimensions. Here is an example of a
three-dimensional array declaration in pseudocode:

Declare Real seats [3][5][8]

You can think of this array as three sets of five rows, with each row containing eight
elements. The array might be used to store the prices of seats in an auditorium, where
there are eight seats in a row, five rows in a section, and a total of three sections.

Figure 8-22 illustrates the concept of a three-dimensional array as “pages” of two-
dimensional arrays.

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

page 0

page 1

page 2

Figure 8-22 A three-dimensional array

Review Questions 329

Arrays with more than three dimensions are difficult to visualize, but they can be use-
ful in some programming problems. For example, in a factory warehouse where cases
of widgets are stacked on pallets, an array with four dimensions could be used to
store a part number for each widget. The four subscripts of each element could rep-
resent the pallet number, case number, row number, and column number of each
widget. Similarly, an array with five dimensions could be used if there were multiple
warehouses.

Checkpoint

8.26 A bookstore keeps books on 50 racks with 10 shelves each. Each shelf holds
25 books. Declare a 3D String array to hold the names of all the books in
the store. The array’s three dimensions should represent the racks, shelves, and
books in the store.

Review Questions

Multiple Choice

1. This appears in an array declaration and specifies the number of elements in the
array.

a. subscript
b. size declarator
c. array name
d. initialization value

2. To make programs easier to maintain, many programmers use these to specify the
size of an array.

a. real numbers
b. string expressions
c. math expressions
d. named constants

3. This is an individual storage location in an array.

a. element
b. bin
c. cubby hole
d. size declarator

4. This is a number that identifies a storage location in an array.

a. element
b. subscript
c. size declarator
d. identifier

5. This is typically the first subscript in an array.

a. –1
b. 1
c. 0
d. The size of the array minus one

330 Chapter 8 Arrays

6. This is typically the last subscript in an array.

a. –1
b. 99
c. 0
d. The size of the array minus one

7. This algorithm uses a loop to step through each element of an array, starting with
the first element, searching for a value.

a. sequential search
b. step-by-step search
c. elemental search
d. binary search

8. Many programming languages perform this, which means they do not allow a
program to use an invalid array subscript.

a. memory checking
b. bounds checking
c. type compatibility checking
d. syntax checking

9. This term describes two or more arrays that hold related data, and the related
elements in each array are accessed with a common subscript.

a. synchronous arrays
b. asynchronous arrays
c. parallel arrays
d. two-dimensional arrays

10. You typically think of a two-dimensional array as containing

a. lines and statements
b. chapters and pages
c. rows and columns
d. horizontal and vertical elements

True or False

1. You can store a mixture of different data types in an array.

2. In most languages, an array’s size cannot be changed while the program is running.

3. Array bounds checking typically occurs while a program is running.

4. You can do many things with arrays, but you cannot pass one as an argument to a
module or a function.

5. A declaration for a two-dimensional array requires only one size declarator.

Short Answer

1. What is an off-by-one error?

2. Look at the following pseudocode:

Constant Integer SIZE = 10
Declare Integer values[SIZE]

Review Questions 331

a. How many elements does the array have?
b. What is the subscript of the first element in the array?
c. What is the subscript of the last element in the array?

3. Look at the following pseudocode:

Constant Integer SIZE = 3
Declare Integer numbers[SIZE] = 1, 2, 3

a. What value is stored in numbers[2]?
b. What value is stored in numbers[0]?

4. A program uses two parallel arrays named customerNumbers and balances.
The customerNumbers array holds customer numbers and the balances array
holds customer account balances. If a particular customer’s customer number is
stored in customerNumbers[187], where would that customer’s account bal-
ance be stored?

5. Look at the following pseudocode array declaration:

Declare Real sales[8][10]

a. How many rows does the array have?
b. How many columns does the array have?
c. How many elements does the array have?
d. Write a pseudocode statement that stores a number in the last column of the last

row in the array.

Algorithm Workbench

1. Write a pseudocode declaration for a String array initialized with the following
strings: "Einstein", "Newton", "Copernicus", and "Kepler".

2. Assume names is an Integer array with 20 elements. Design a For loop that dis-
plays each element of the array.

3. Assume the arrays numberArray1 and numberArray2 each have 100 elements.
Design an algorithm that copies the values in numberArray1 to numberArray2.

4. Draw a flowchart showing the general logic for totaling the values in an array.

5. Draw a flowchart showing the general logic for finding the highest value in an
array.

6. Draw a flowchart showing the general logic for finding the lowest value in an
array.

7. Assume the following declarations appear in a pseudocode program:

Constant Integer SIZE = 100
Declare Integer firstArray[SIZE]
Declare Integer secondArray[SIZE]

Also, assume that values have been stored in each element of firstArray.
Design an algorithm that copies the contents of firstArray to secondArray.

8. Design an algorithm for a function that accepts an Integer array as an argument
and returns the total of the values in the array.

9. Write a pseudocode algorithm that uses the For Each loop to display all of the
values in the following array:

Constant Integer SIZE = 10
Declare Integer values[SIZE] = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Debugging Exercises
1. What is the error in the following pseudocode?

// This program uses an array to display five names.
Constant Integer SIZE = 5

Declare String names[SIZE] = "Meg", "Jack", "Steve",
"Bill", "Lisa"

Declare Integer index
For index = 0 To SIZE

Display names[index]
End For

2. What is the error in the following pseudocode?
// This program displays the highest value in the array.
Declare Integer SIZE = 3
Declare Integer values[SIZE] = 1, 3, 4
Declare Integer index
Declare Integer highest

For index = 0 To SIZE – 1
If values[index] > highest Then

Set highest = values[index]
End If

End For

Display "The highest number is ", highest

3. What is the error in the following pseudocode?
// The searchName function accepts a string containing the name
// to search for, an array of strings containing the names, and
// an integer specifying the size of the array. The function
// searches for the name in the array. If the name is found, the
// string containing the name is returned; otherwise a message
// indicating that the name was not found in the array is
// returned.
Function String searchName(String name, String names[],

Integer size)
Declare Boolean found
Declare Integer index
Declare String result

// Step through the array searching for the
// specified name.
While found == False AND index <= size – 1

If contains(names[index], name) Then
Set found = True

Else
Set index = index + 1

End If
End While

332 Chapter 8 Arrays

Programming Exercises 333

// Determine the result.
If found == True Then

Set result = names[index]
Else

Set result = "That name was not found in the array."

End If
Return result

End Function

Programming Exercises
1. Total Sales

Design a program that asks the user to enter a store’s sales for each day of the
week. The amounts should be stored in an array. Use a loop to calculate the total
sales for the week and display the result.

2. Lottery Number Generator

Design a program that generates a 7-digit lottery number. The program should
have an Integer array with 7 elements. Write a loop that steps through the array,
randomly generating a number in the range of 0 through 9 for each element. (Use
the random function that was discussed in Chapter 6.) Then write another loop
that displays the contents of the array.

3. Rainfall Statistics

Design a program that lets the user enter the total rainfall for each of 12 months
into an array. The program should calculate and display the total rainfall for the
year, the average monthly rainfall, and the months with the highest and lowest
amounts.

4. Number Analysis Program

Design a program that asks the user to enter a series of 20 numbers. The program
should store the numbers in an array and then display the following data:
● The lowest number in the array
● The highest number in the array
● The total of the numbers in the array
● The average of the numbers in the array

5. Charge Account Validation

Design a program that asks the user to enter a charge account number. The pro-
gram should determine whether the number is valid by comparing it to the follow-
ing list of valid charge account numbers:

5658845 4520125 7895122 8777541 8451277 1302850
8080152 4562555 5552012 5050552 7825877 1250255
1005231 6545231 3852085 7576651 7881200 4581002

These numbers should be stored in an array. Use the sequential search algorithm to
locate the number entered by the user. If the number is in the array, the program
should display a message indicating the number is valid. If the number is not in the
array, the program should display a message indicating the number is invalid.

The Total Sales
Problem

VideoNote

6. Days of Each Month

Design a program that displays the number of days in each month. The program’s
output should be similar to this:

January has 31 days.
February has 28 days.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days.
December has 31 days.

The program should have two parallel arrays: a 12-element String array that is
initialized with the names of the months, and a 12-element Integer array that is
initialized with the number of days in each month. To produce the output speci-
fied, use a loop to step through the arrays getting the name of a month and the
number of days in that month.

7. Phone Number Lookup

Design a program that has two parallel arrays: a String array named people
that is initialized with the names of seven of your friends, and a String array
named phoneNumbers that is initialized with your friends’ phone numbers. The
program should allow the user to enter a person’s name (or part of a person’s
name). It should then search for that person in the people array. If the person is
found, it should get that person’s phone number from the phoneNumbers array
and display it. If the person is not found in the people array, the program should
display a message indicating so.

8. Payroll

Design a program that uses the following parallel arrays:
● empId: An array of seven Integers to hold employee identification numbers.

The array should be initialized with the following numbers:

56588 45201 78951 87775 84512 13028 75804
● hours: An array of seven Integers to hold the number of hours worked by

each employee.
● payRate: An array of seven Reals to hold each employee’s hourly pay rate.
● wages: An array of seven Reals to hold each employee’s gross wages.

The program should relate the data in each array through the subscripts. For
example, the number in element 0 of the hours array should be the number of
hours worked by the employee whose identification number is stored in element
0 of the empId array. That same employee’s pay rate should be stored in element
0 of the payRate array.

The program should display each employee number and ask the user to enter that
employee’s hours and pay rate. It should then calculate the gross wages for that
employee (hours times pay rate), which should be stored in the wages array. After

334 Chapter 8 Arrays

the data has been entered for all the employees, the program should display each
employee’s identification number and gross wages.

9. Driver’s License Exam

The local driver’s license office has asked you to design a program that grades the
written portion of the driver’s license exam. The exam has 20 multiple choice ques-
tions. Here are the correct answers:

1. B 6. A 11. B 16. C
2. D 7. B 12. C 17. C
3. A 8. A 13. D 18. B
4. A 9. C 14. A 19. D
5. C 10. D 15. D 20. A

Your program should store these correct answers in an array. (Store each ques-
tion’s correct answer in an element of a String array.) The program should ask the
user to enter the student’s answers for each of the 20 questions, which should be
stored in another array. After the student’s answers have been entered, the program
should display a message indicating whether the student passed or failed the exam.
(A student must correctly answer 15 of the 20 questions to pass the exam.) It
should then display the total number of correctly answered questions, the total
number of incorrectly answered questions, and a list showing the question num-
bers of the incorrectly answered questions.

10. Tic-Tac-Toe Game

Design a program that allows two players to play a game of tic-tac-toe. Use a two-
dimensional String array with three rows and three columns as the game board.
Each element of the array should be initialized with an asterisk (*). The program
should run a loop that does the following:

a. Displays the contents of the board array.
b. Allows player 1 to select a location on the board for an X. The program

should ask the user to enter the row and column number.
c. Allows player 2 to select a location on the board for an O. The program

should ask the user to enter the row and column number.
d. Determines whether a player has won or if a tie has occurred. If a player has

won, the program should declare that player the winner and end. If a tie has
occurred, the program should say so and end.

e. Player 1 wins when there are three Xs in a row on the game board. Player 2
wins when there are three Os in a row on the game board. The winning Xs or
Os can appear in a row, in a column, or diagonally across the board. A tie
occurs when all of the locations on the board are full, but there is no winner.

Programming Exercises 335

This page intentionally left blank

TOPICS

9.1 The Bubble Sort Algorithm

9.2 The Selection Sort Algorithm

9.3 The Insertion Sort Algorithm

9.4 The Binary Search Algorithm

Sorting and
Searching Arrays

9.1 The Bubble Sort Algorithm

CONCEPT: A sorting algorithm rearranges the contents of an array so they appear
in a specific order. The bubble sort is a simple sorting algorithm.

Sorting Algorithms
Many programming tasks require that the data in an array be sorted in some order.
Customer lists, for instance, are commonly sorted in alphabetical order, student grades
might be sorted from highest to lowest, and product codes could be sorted so all the
products of the same color are stored together. To sort the data in an array, the
programmer must use an appropriate sorting algorithm. A sorting algorithm is a tech-
nique for stepping through an array and rearranging its contents in some order.

The data in an array can be sorted in either ascending or descending order. If an array
is sorted in ascending order, it means the values in the array are stored from lowest
to highest. If the values are sorted in descending order, they are stored from highest
to lowest. This chapter discusses three sorting algorithms that you can use to sort
the data in an array: the bubble sort, the selection sort, and the insertion sort. This sec-
tion examines the bubble sort algorithm.

C
H

A
P

T
E

R

9

337

338 Chapter 9 Sorting and Searching Arrays

The Bubble Sort
The bubble sort is an easy way to arrange data in ascending or descending order. It is
called the bubble sort algorithm because as it makes passes through and compares the
elements of the array, certain values “bubble” toward the end of the array with each
pass. For example, if you are using the algorithm to sort an array in ascending order,
the larger values move toward the end. If you are using the algorithm to sort an array
in descending order, the smaller values move toward the end. In this section you will
see how the bubble sort algorithm can be used to sort an array in ascending order.

Suppose we have the array shown in Figure 9-1. Let’s see how the bubble sort can be
used in arranging the array’s elements in ascending order.

7 2 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Figure 9-1 An array

72 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

These elements are
swapped.

Figure 9-2 Elements 0 and 1 are swapped

72 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

These elements are
swapped.

Figure 9-3 Elements 1 and 2 are swapped

The bubble sort starts by comparing the first two elements in the array. If element 0
is greater than element 1, they are swapped. The array would then appear as shown
in Figure 9-2.

This method is repeated with elements 1 and 2. If element 1 is greater than element 2,
they are swapped. The array would then appear as shown in Figure 9-3.

Next, elements 2 and 3 are compared. In this array, these elements are already in the
proper order (element 2 is less than element 3), so no values are swapped. As the cycle
continues, elements 3 and 4 are compared. Once again, it is not necessary to swap the
values because they are already in the proper order.

9.1 The Bubble Sort Algorithm 339

When elements 4 and 5 are compared, however, they must be swapped because element
4 is greater than element 5. The array now appears as shown in Figure 9-4.

At this point, the entire array has been scanned once, and the largest value, 9, is in
the correct position. There are other elements, however, that are not yet in their final
positions. So, the algorithm will make another pass through the array, comparing
each element with its neighbor. In the next pass it will stop comparing after reaching
the next-to-last element because the last element already contains the correct value.

The second pass starts by comparing elements 0 and 1. Because those two are in the
proper order, they are not swapped. Elements 1 and 2 are compared next, but once
again, they are not swapped. This continues until elements 3 and 4 are compared.
Because element 3 is greater than element 4, they are swapped. Element 4 is the last
element that is compared during this pass, so this pass stops. The array now appears
as shown in Figure 9-5.

At the end of the second pass, the last two elements in the array contain the correct
values. The third pass starts now, comparing each element with its neighbor. The
third pass will not involve the last two elements, however, because they have already
been sorted. When the third pass is finished, the last three elements will hold the cor-
rect values, as shown in Figure 9-6.

Each time the algorithm makes a pass through the array, the portion of the array that
is scanned is decreased in size by one element, and the largest value in the scanned

72 3 8 91

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

These elements are
swapped.

Figure 9-4 Elements 4 and 5 are swapped

72 3 8 91

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

These elements are
swapped.

Figure 9-5 Elements 3 and 4 are swapped

72 3 8 91

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Figure 9-6 The array after the third pass

340 Chapter 9 Sorting and Searching Arrays

portion of the array is moved to its final position. When all of the passes have been
made, the array will appear as shown in Figure 9-7.

Swapping Array Elements
As you saw in the description of the bubble sort algorithm, certain elements are
swapped as the algorithm steps through the array. Let’s briefly discuss the process of
swapping two items in computer memory. Assume we have the following variable dec-
larations:

Declare Integer a = 1
Declare Integer b = 9

Suppose we want to swap the values in these variables so the variable a contains 9
and the variable b contains 1. At first, you might think that we only need to assign the
variables to each other, like this:

// ERROR! The following does NOT swap the variables.
Set a = b
Set b = a

To understand why this doesn’t work, let’s step through the pseudocode. The first
statement is Set a = b. This causes the value 9 to be assigned to a. But, what hap-
pens to the value 1 that was previously stored in a? Remember, when you assign a
new value to a variable, the new value replaces any value that was previously stored
in the variable. So, the old value, 1, will be thrown away. Then the next statement is
Set b = a. Because the variable a contains 9, this assigns 9 to b. After these statements
execute, the variables a and b will both contain the value 9.

To successfully swap the contents of two variables, we need a third variable that can
serve as a temporary storage location:

Declare Integer temp

Then we can perform the following steps to swap the values in the variables a and b:

● Assign the value of a to temp.
● Assign the value of b to a.
● Assign the value of temp to b.

Figure 9-8 shows the contents of these variables as we perform each of these steps. No-
tice that after the steps are finished, the values in a and b are swapped.

Let’s create a module named swap that will swap two items in memory. We will use
the module in the bubble sort algorithm. Figure 9-9 shows a flowchart for the swap
module. Notice that the module has two reference parameters, a and b. When we call
the module, we pass two variables (or array elements) as arguments. When the module
is finished, the values of the arguments will be swapped.

31 2 8 97

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

Figure 9-7 The array with all elements sorted

9.1 The Bubble Sort Algorithm 341

1

9

?

a

b

temp

Declare Integer a = 1
Declare Integer b = 9
Declare Integer temp

Set temp = a

1

9

1

a

b

temp

Set a = b

9

9

1

a

b

temp

Set b = temp

9

1

1

a

b

temp

1

2

3

4

Figure 9-8 Swapping the values of a and b

Return

swap
(Integer Ref a,
Integer Ref b)

Set temp = a

Declare Integer temp

Set a = b

Set b = temp

Figure 9-9 Flowchart for a swap module

NOTE : It is critical that we use reference parameters in the swap module,
because the module must be able to change the values of the items that are passed
to it as arguments.

342 Chapter 9 Sorting and Searching Arrays

Here is the pseudocode for the swap module:

Module swap(Integer Ref a, Integer Ref b)
// Local variable for temporary storage.
Declare Integer temp

// Swap the values in a and b.
Set temp = a
Set a = b
Set b = temp

End Module

Of course, this version of the swap module works only with Integer arguments. If
we want to swap the contents of other types of variables, we would have to change
the data type of the a and b parameters as well as the temp variable.

Designing the Bubble Sort Algorithm
The bubble sort algorithm is usually incorporated into a program as a module.
When you need to sort an array, pass the array to the module and it sorts the array.
Figure 9-10 shows a flowchart for a bubbleSort module that sorts an array of inte-
gers. Program 9-1 shows the pseudocode for the module. (Note that the pseudocode
shown in Program 9-1 is only the bubbleSort module and not a complete program.)

bubbleSort
(Integer Ref array[],
Integer arraySize)

Declare Integer
maxElement

Declare Integer index

maxElement >= 1

Set index= 0

array[index] >
array[index + 1]

swap(array[index],
array[index + 1])

index <=
maxElement – 1

True

True True

Set index= index + 1

False

Set maxElement =
maxElement – 1

False

Set maxElement =
arraySize – 1

Return

False

Figure 9-10 Flowchart for the bubble sort algorithm

9.1 The Bubble Sort Algorithm 343

Program 9-1 bubbleSort module
(not a complete program)

1 Module bubbleSort(Integer Ref array[], Integer arraySize)
2 // The maxElement variable will contain the subscript
3 // of the last element in the array to compare.
4 Declare Integer maxElement
5
6 // The index variable will be used as a counter
7 // in the inner loop.
8 Declare Integer index
9
10 // The outer loop positions maxElement at the last
11 // element to compare during each pass through the
12 // array. Initially maxElement is the index of the
13 // last element in the array. During each iteration,
14 // it is decreased by one.
15 For maxElement = arraySize - 1 To 0 Step -1
16
17 // The inner loop steps through the array, comparing
18 // each element with its neighbor. All of the
19 // elements from index 0 through maxElement are
20 // involved in the comparison. If two elements are
21 // out of order, they are swapped.
22 For index = 0 To maxElement - 1
23
24 // Compare an element with its neighbor and swap
25 // if necessary.
26 If array[index] > array[index + 1] Then
27 Call swap(array[index], array[index + 1])
28 End If
29 End For
30 End For
31 End Module

In lines 4 and 8 the following variables are declared:

● The maxElement variable will hold the subscript of the last element that is to
be compared to its immediate neighbor.

● The index variable is used as an array subscript in one of the loops.

The module uses two For loops, one nested inside another. The outer loop begins in
line 15 as follows:

For maxElement = arraySize - 1 To 0 Step -1

This loop will iterate once for each element in the array. It causes the maxElement
variable to take on all of the array’s subscripts, from the highest subscript down to 0.
After each iteration, maxElement is decremented by one.

The second loop, which is nested inside the first loop, begins in line 22 as follows:

For index = 0 To maxElement - 1

344 Chapter 9 Sorting and Searching Arrays

This loop iterates once for each of the unsorted array elements. It starts index at 0
and increments it up through maxElement - 1. During each iteration, the compari-
son in line 26 is performed:

If array[index] > array[index + 1] Then

This If statement compares the element at array[index] with its neighbor
array[index + 1]. If the element’s neighbor is greater, then the two are swapped in
line 27. (The swap module must also appear in any program that uses the bubbleSort
module.) The following In the Spotlight section shows how the bubble sort algorithm
is used in a complete program.

In the Spotlight:
Using the Bubble Sort Algorithm
After Kathryn grades a set of exams, she likes to see a list of the exam scores sorted
from lowest to highest. She has asked you to design a program that will allow her to in-
put a set of test scores and will then display the scores sorted in ascending order. Here
are the general steps in the algorithm:

1. Get the test scores from the user and store them in an array.
2. Sort the array in ascending order.
3. Display the contents of the array.

For testing purposes, you ask Kathryn whether you can first design the program for her
smallest class, which has only six students. If she is satisfied with the program, you can
modify it to work with her other classes. She agrees with your plan.

Program 9-2 shows the pseudocode for the program, which is modularized. Rather
than presenting the entire program at once, we will first examine the main module, and
then we will look at the additional modules separately. Here is the main module:

Program 9-2 Ascending score program: main module

1 Module main()
2 // Constant for the array size
3 Constant Integer SIZE = 6
4
5 // Array to hold test scores
6 Declare Integer testScores[SIZE]
7
8 // Get the test scores.
9 getTestScores(testScores, SIZE)
10
11 // Sort the test scores.
12 bubbleSort(testScores, SIZE)
13
14 // Display the test scores.
15 Display "Here are the test scores"
16 Display "sorted from lowest to highest."
17 showTestScores(testScores, SIZE)
18 End Module
19

9.1 The Bubble Sort Algorithm 345

Line 3 declares a constant, SIZE, that will be used as an array size declarator. The
testScores array, which will hold the test scores, is declared in line 6. In line 9 the
testScores array and the SIZE constant are passed to the getTestScores module.
As you will see in a moment, the testScores array is passed by reference. The mod-
ule gets the test scores from the user and stores them in the array.

Line 12 passes the testScores array and the SIZE constant to the bubbleSort mod-
ule. (The array is passed by reference.) When the module finishes, the values in the
array will be sorted in ascending order.

Line 17 passes the testScores array and the SIZE constant to the showTestScores
module. This module displays the values in the array.

Next is the definition of the getTestScores module, shown here:

Program 9-2 Ascending score program (continued):
getTestScores module

20 // The getTestScores module prompts the user
21 // to enter test scores into the array that is
22 // passed as an argument.
23 Module getTestScores(Integer Ref array[], Integer arraySize)
24 // Counter variable
25 Declare Integer index
26
27 // Get the test scores.
28 For index = 0 to arraySize - 1
29 Display "Enter score number ", index + 1
30 Input array[index]
31 End For
32 End Module
33

The getTestScores module has two parameters:

● array[]—An Integer array is passed by reference into this parameter.
● arraySize—An Integer specifying the size of the array is passed into this

parameter.

The purpose of this module is to get a student’s test scores from the user and store them
in the array that is passed as an argument into the array[] parameter.

The definitions of the bubbleSort and swap modules appear next. These modules are
the same as presented earlier in this chapter.

Program 9-2 Ascending score program (continued):
the bubbleSort and swap modules

34 // The bubbleSort module accepts an array of Integers
35 // and the array's size as arguments. When the module
36 // is finished, the values in the array will be sorted
37 // in ascending order.
38 Module bubbleSort(Integer Ref array[], Integer arraySize)

346 Chapter 9 Sorting and Searching Arrays

39 // The maxElement variable will contain the subscript
40 // of the last element in the array to compare.
41 Declare Integer maxElement
42
43 // The index variable will be used as a counter
44 // in the inner loop.
45 Declare Integer index
46
47 // The outer loop positions maxElement at the last
48 // element to compare during each pass through the
49 // array. Initially maxElement is the index of the
50 // last element in the array. During each iteration,
51 // it is decreased by one.
52 For maxElement = arraySize - 1 To 0 Step -1
53
54 // The inner loop steps through the array, comparing
55 // each element with its neighbor. All of the
56 // elements from index 0 through maxElement are
57 // involved in the comparison. If two elements are
58 // out of order, they are swapped.
59 For index = 0 To maxElement - 1
60
61 // Compare an element with its neighbor and swap
62 // if necessary.
63 If array[index] > array[index + 1] Then
64 Call swap(array[index], array[index + 1])
65 End If
66 End For
67 End For
68 End Module
69
70 // The swap module accepts two Integer arguments
71 // and swaps their contents.
72 Module swap(Integer Ref a, Integer Ref b)
73 // Local variable for temporary storage.
74 Declare Integer temp
75
76 // Swap the values in a and b.
77 Set temp = a
78 Set a = b
79 Set b = temp
80 End Module
81

The definition of the showTestScore module appears next.

Program 9-2 Ascending score program (continued):
the showTestScores module

82 // The showTestScores module displays the contents
83 // of the array that is passed as an argument.
84 Module showTestScores(Integer array[], Integer arraySize)
85 // Counter variable
86 Declare Integer index

9.1 The Bubble Sort Algorithm 347

Sorting an Array of Strings
Recall from Chapter 4 that most languages allow you to determine whether one string
is greater than, less than, equal to, or not equal to another string. As a result, you can
design the bubble sort algorithm to work with an array of strings. This gives you the
ability to sort an array of strings in alphabetical (ascending) order. The pseudocode in
Program 9-3 shows an example. Notice that this program’s versions of the bubbleSort
and swap modules have been designed to work with String arrays.

Program 9-3

1 Module main()
2 // Constant for the array size
3 Constant Integer SIZE = 6

87
88 // Display the test scores.
89 For index = 0 to arraySize - 1
90 Display array[index]
91 End For
92 End Module

The showTestScores module has two parameters:

● array[]—An Integer array is passed by reference into this parameter.
● arraySize—An Integer specifying the size of the array is passed into this

parameter.

The purpose of this module is to display the contents of the array that is passed into the
array parameter.

Program Output (with Input Shown in Bold)

Enter score number 1
88 [Enter]
Enter score number 2
92 [Enter]
Enter score number 3
73 [Enter]
Enter score number 4
69 [Enter]
Enter score number 5
98 [Enter]
Enter score number 6
79 [Enter]
Here are the test scores
sorted from lowest to highest.
69
73
79
88
92
98

348 Chapter 9 Sorting and Searching Arrays

4
5 // An array of strings
6 Declare String names[SIZE] = "David", "Abe", "Megan",
7 "Beth", "Jeff", "Daisy"
8
9 // Loop counter
10 Declare Integer index
11
12 // Display the array in its original order.
13 Display "Original order:"
14 For index = 0 To SIZE - 1
15 Display names[index]
16 End For
17
18 // Sort the names.
19 Call bubbleSort(names, SIZE)
20
21 // Display a blank line.
22 Display
23
24 // Display the sorted array.
25 Display "Sorted order:"
26 For index = 0 To SIZE - 1
27 Display names[index]
28 End For
29 End Module
30
31 // The bubbleSort module accepts an array of Strings
32 // and the array's size as arguments. When the module
33 // is finished, the values in the array will be sorted
34 // in ascending order.
35 Module bubbleSort(String Ref array[], Integer arraySize)
36 // The maxElement variable will contain the subscript
37 // of the last element in the array to compare.
38 Declare Integer maxElement
39
40 // The index variable will be used as a counter
41 // in the inner loop.
42 Declare Integer index
43
44 // The outer loop positions maxElement at the last
45 // element to compare during each pass through the
46 // array. Initially maxElement is the index of the
47 // last element in the array. During each iteration,
48 // it is decreased by one.
49 For maxElement = arraySize - 1 To 0 Step -1
50
51 // The inner loop steps through the array, comparing
52 // each element with its neighbor. All of the
53 // elements from index 0 through maxElement are
54 // involved in the comparison. If two elements are
55 // out of order, they are swapped.
56 For index = 0 To maxElement - 1
57

9.1 The Bubble Sort Algorithm 349

58 // Compare an element with its neighbor and swap
59 // if necessary.
60 If array[index] > array[index + 1] Then
61 Call swap(array[index], array[index + 1])
62 End If
63 End For
64 End For
65 End Module
66
67 // The swap module accepts two String arguments
68 // and swaps their contents.
69 Module swap(String Ref a, String Ref b)
70 // Local variable for temporary storage
71 Declare String temp
72
73 // Swap the values in a and b.
74 Set temp = a
75 Set a = b
76 Set b = temp
77 End Module

Program Output (with Input Shown in Bold)

Original order:
David
Abe
Megan
Beth
Jeff
Daisy

Sorted order:
Abe
Beth
Daisy
David
Jeff
Megan

TIP: All of the algorithms presented in this chapter can be designed to work with
strings, as long as the language you are using allows you to compare string values.

Sorting in Descending Order
The bubble sort algorithm can be easily modified to sort an array in descending order,
which means that the values will be ordered from highest to lowest. For example, the
pseudocode in Program 9-4 is a modified version of Program 9-3. This version sorts the
names array in descending order. The only modification to the bubble sort algorithm is
in line 60. The comparison has been changed to determine whether array[index] is
less than array[index + 1].

350 Chapter 9 Sorting and Searching Arrays

Program 9-4

1 Module main()
2 // Constant for the array size
3 Constant Integer SIZE = 6
4
5 // An array of strings
6 Declare String names[SIZE] = "David", "Abe", "Megan",
7 "Beth", "Jeff", "Daisy"
8
9 // Loop counter
10 Declare Integer index
11
12 // Display the array in its original order.
13 Display "Original order:"
14 For index = 0 To SIZE - 1
15 Display names[index]
16 End For
17
18 // Sort the names.
19 Call bubbleSort(names, SIZE)
20
21 // Display a blank line.
22 Display
23
24 // Display the sorted array.
25 Display "Sorted in descending order:"
26 For index = 0 To SIZE - 1
27 Display names[index]
28 End For
29 End Module
30
31 // The bubbleSort module accepts an array of Strings
32 // and the array's size as arguments. When the module
33 // is finished, the values in the array will be sorted
34 // in descending order.
35 Module bubbleSort(String Ref array[], Integer arraySize)
36 // The maxElement variable will contain the subscript
37 // of the last element in the array to compare.
38 Declare Integer maxElement
39
40 // The index variable will be used as a counter
41 // in the inner loop.
42 Declare Integer index
43
44 // The outer loop positions maxElement at the last
45 // element to compare during each pass through the
46 // array. Initially maxElement is the index of the
47 // last element in the array. During each iteration,
48 // it is decreased by one.
49 For maxElement = arraySize - 1 To 0 Step -1
50
51 // The inner loop steps through the array, comparing
52 // each element with its neighbor. All of the

9.2 The Selection Sort Algorithm 351

53 // elements from index 0 through maxElement are
54 // involved in the comparison. If two elements are
55 // out of order, they are swapped.
56 For index = 0 To maxElement - 1
57
58 // Compare an element with its neighbor and swap
59 // if necessary.
60 If array[index] < array[index + 1] Then
61 Call swap(array[index], array[index + 1])
62 End If
63 End For
64 End For
65 End Module
66
67 // The swap module accepts two String arguments
68 // and swaps their contents.
69 Module swap(String Ref a, String Ref b)
70 // Local variable for temporary storage
71 Declare String temp
72
73 // Swap the values in a and b.
74 Set temp = a
75 Set a = b
76 Set b = temp
77 End Module

Program Output

Original order:
David
Abe
Megan
Beth
Jeff
Daisy

Sorted in descending order:
Megan
Jeff
David
Daisy
Beth
Abe

9.2 The Selection Sort Algorithm

CONCEPT: The selection sort is a sorting algorithm that is much more efficient
than the bubble sort. The selection sort algorithm steps through an
array, moving each value to its final sorted position.

The bubble sort algorithm is simple, but it is inefficient because values move by only
one element at a time toward their final destination in the array. The selection sort

352 Chapter 9 Sorting and Searching Arrays

algorithm usually performs fewer swaps because it moves items immediately to their fi-
nal position in the array. The selection sort works like this: The smallest value in the ar-
ray is located and moved to element 0. Then, the next smallest value is located and
moved to element 1. This process continues until all of the elements have been placed
in their proper order. Let’s see how the selection sort works when arranging the ele-
ments of the array in Figure 9-11.

The selection sort scans the array, starting at element 0, and locates the element with
the smallest value. Then, the contents of this element are swapped with the contents of
element 0. In this example, the 1 stored in element 5 is swapped with the 5 stored in el-
ement 0. After the swap, the array appears as shown in Figure 9-12.

Then, the algorithm repeats the process, but because element 0 already contains the
smallest value in the array, it can be left out of the procedure. This time, the algorithm
begins the scan at element 1. In this example, the value in element 2 is swapped with
the value in element 1. Then, the array appears as shown in Figure 9-13.

Once again the process is repeated, but this time the scan begins at element 2. The
algorithm will find that element 5 contains the next smallest value. This element’s

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

5 7 2 8 9 1

Figure 9-11 Values in an array

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

1 7 2 8 9 5

These two elements were swapped.

Figure 9-12 Values in the array after the first swap

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

1 2 7 8 9 5

These two elements were swapped.

Figure 9-13 Values in the array after the second swap

9.2 The Selection Sort Algorithm 353

Figure 9-17 shows a flowchart for a module that performs the selection sort algo-
rithm. The module accepts an Integer array (passed by reference) and an Integer
that specifies the array’s size. When the module is finished executing, the array will
be sorted in ascending order. Program 9-5 shows the selectionSort module in
pseudocode.

value is swapped with that of element 2, causing the array to appear as shown in
Figure 9-14.

Next, the scanning begins at element 3. Its value is swapped with that of element 5,
causing the array to appear as shown in Figure 9-15.

At this point there are only two elements left to sort. The algorithm finds that the value
in element 5 is smaller than that of element 4, so the two are swapped. This puts the
array in its final arrangement, as shown in Figure 9-16.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

1 2 5 8 9 7

These two elements were swapped.

Figure 9-14 Values in the array after the third swap

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

1 2 5 7 9 8

These two elements were swapped.

Figure 9-15 Values in the array after the fourth swap

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

1 2 5 7 8 9

These two elements were swapped.

Figure 9-16 Values in the array after the fifth swap

354 Chapter 9 Sorting and Searching Arrays

Program 9-5

1 Module main()
2 // Constant for the array size
3 Constant Integer SIZE = 6
4
5 // An array of Integers
6 Declare Integer numbers[SIZE] = 4, 6, 1, 3, 5, 2
7
8 // Loop counter
9 Declare Integer index
10
11 // Display the array in its original order.
12 Display "Original order:"
13 For index = 0 To SIZE - 1
14 Display numbers[index]
15 End For
16
17 // Sort the numbers.
18 Call selectionSort(numbers, SIZE)
19
20 // Display a blank line.
21 Display
22
23 // Display the sorted array.
24 Display "Sorted order:"
25 For index = 0 To SIZE - 1
26 Display numbers[index]
27 End For
28 End Module
29
30 // The selectionSort module accepts an array of integers
31 // and the array's size as arguments. When the module is
32 // finished, the values in the array will be sorted in
33 // ascending order.
34 Module selectionSort(Integer Ref array[], Integer arraySize)
35 // startScan will hold the starting position of the scan.
36 Declare Integer startScan
37
38 // minIndex will hold the subscript of the element with
39 // the smallest value found in the scanned area.
40 Declare Integer minIndex
41
42 // minValue will hold the smallest value found in the
43 // scanned area.
44 Declare Integer minValue
45
46 // index is a counter variable used to hold a subscript.
47 Declare Integer index
48
49 // The outer loop iterates once for each element in the
50 // array, except the last element. The startScan variable
51 // marks the position where the scan should begin.

9.2 The Selection Sort Algorithm 355

52 For startScan = 0 To arraySize - 2
53
54 // Assume the first element in the scannable area
55 // is the smallest value.
56 Set minIndex = startScan
57 Set minValue = array[startScan]
58
59 // Scan the array, starting at the 2nd element in
60 // the scannable area. We are looking for the smallest
61 // value in the scannable area.
62 For index = startScan + 1 To arraySize - 1
63 If array[index] < minValue Then
64 Set minValue = array[index]
65 Set minIndex = index
66 End If
67 End For
68
69 // Swap the element with the smallest value
70 // with the first element in the scannable area.
71 Call swap(array[minIndex], array[startScan])
72 End For
73 End Module
74
75 // The swap module accepts two Integer arguments
76 // and swaps their contents.
77 Module swap(Integer Ref a, Integer Ref b)
78 // Local variable for temporary storage
79 Declare Integer temp
80
81 // Swap the values in a and b.
82 Set temp = a
83 Set a = b
84 Set b = temp
85 End Module

Program Output

Original order:
4
6
1
3
5
2

Sorted order:
1
2
3
4
5
6

356 Chapter 9 Sorting and Searching Arrays

startScan <=
arraySize – 2

Declare Integer startScan
Declare Integer minIndex
Declare Integer minValue

Declare Integer index

Set minIndex =
startScan

Set minValue =
array[startScan]

Set index =
startScan + 1

index <= array
Size – 1

array[index]
< minValue

Set minValue =
array[index]

Set minIndex = index

Set startScan = 0

True

True

True

Set index = index + 1

False

swap(array[minIndex],
array[startScan])

Set startScan =
startScan + 1

Return

False

selectionSort
(Integer Ref array[],
Integer arraySize)

False

Figure 9-17 Flowchart for the selectionSort module

9.3 The Insertion Sort Algorithm 357

NOTE : You can modify the selectionSort module so it sorts the array in
descending order by changing the less than operator in line 63 to a greater than
operator, as shown here:

If array[index] > maxValue Then

Notice that we have also changed the name of the minValue variable to maxValue,
which is more appropriate for a descending order sort. You would need to make this
change throughout the module.

9.3 The Insertion Sort Algorithm

CONCEPT: The insertion sort algorithm is also more efficient than the bubble sort
algorithm. It sorts the first two elements, which become the sorted part
of the array. It then inserts each of the remaining elements, one at a
time, into the sorted part of the array at the correct location.

The insertion sort algorithm is another sorting algorithm that is also more efficient
than the bubble sort. The insertion sort begins sorting the first two elements of the
array. It simply compares the elements and, if necessary, swaps them so they are in the
proper order. This becomes a sorted subset of the array.

Then, the objective is to incorporate the third element of the array into the sorted sub-
set. This is done by inserting the third element of the array into the proper position rel-
ative to the first two elements. If the sort needs to shift either of the first two elements
to accommodate the third element, it does so. Once it has inserted the third element
into the correct position (relative to the first two elements), the first three elements be-
come the sorted subset of the array.

This process continues with the fourth and subsequent elements, until all of the ele-
ments have been inserted into their proper positions. Let’s look at an example. Suppose
we start with the Integer array shown in Figure 9-18. As shown in the figure, the val-
ues in the first and second elements are out of order, so they will be swapped.

After the swap takes place, the first and second elements will be the sorted subset of the
array. The next step is to move the value of the third element so it is in the correct po-
sition relative to the first two elements. As shown in Figure 9-19, the value in the third
element must be positioned between the values in the first and second elements.

7 2 4 6 3 1

These two elements
will be swapped.

Figure 9-18 An unsorted array

The Insertion Sort
Algorithm

VideoNote

358 Chapter 9 Sorting and Searching Arrays

After the value in the third element is moved to its new position, the first three elements
become the sorted subset of the array. The next step is to move the value of the fourth
element so it is in the correct position relative to the first three elements. As shown in
Figure 9-20, the value in the fourth element must be positioned between the values in
the second and third elements.

After the value in the fourth element is moved to its new position, the first four ele-
ments become the sorted subset of the array. The next step is to move the value of the
fifth element so it is in the correct position relative to the first four elements. As shown
in Figure 9-21, the value in the fifth element must be positioned between the values in
the first and second elements.

2 7 4 6 3 1

The third element must be
inserted between the first

and second elements.

This is the sorted subset of
the array.

Figure 9-19 The third element must be moved

2 4 6 7 3 1

The fifth element must be inserted between
the first and second elements.

This is the sorted subset of
the array.

Figure 9-21 The fifth element must be moved

2 4 7 6 3 1

The fourth element must be
inserted between the second

and third elements.

This is the sorted subset of
the array.

Figure 9-20 The fourth element must be moved

9.3 The Insertion Sort Algorithm 359

After the value in the fifth element is moved to its new position, the first five elements
become the sorted subset of the array. The next step is to move the value of the sixth
element so it is in the correct position relative to the first five elements. As shown
in Figure 9-22, the value in the sixth element must be moved to the beginning of the
array.

The sixth element is the last element in the array. Once it is moved to its correct posi-
tion, the entire array is sorted. This is shown in Figure 9-23.

Figure 9-24 shows a flowchart for a module that performs the insertion sort algorithm.
The module accepts an Integer array (passed by reference) and an Integer that spec-
ifies the array’s size. When the module is finished executing, the array will be sorted in
ascending order. Program 9-6 shows the insertionSort module in pseudocode.

2 3 4 6 7 1

The sixth element must be moved
to the beginning of the array.

This is the sorted subset of
the array.

Figure 9-22 The sixth element must be moved

1 2 3 4 6 7

The entire array is now sorted.

Figure 9-23 All of the elements are in the correct positions

360 Chapter 9 Sorting and Searching Arrays

Program 9-6

1 Module main()
2 // Constant for the array size
3 Constant Integer SIZE = 6
4
5 // An array of Integers
6 Declare Integer numbers[SIZE] = 4, 6, 1, 3, 5, 2
7
8 // Loop counter
9 Declare Integer index
10
11 // Display the array in its original order.
12 Display "Original order:"
13 For index = 0 To SIZE - 1
14 Display numbers[index]
15 End For
16
17 // Sort the numbers.
18 Call insertionSort(numbers, SIZE)
19
20 // Display a blank line.
21 Display
22
23 // Display the sorted array.
24 Display "Sorted order:"
25 For index = 0 To SIZE - 1
26 Display numbers[index]
27 End For
28 End Module
29
30 // The insertionSort module accepts an array of integers
31 // and the array's size as arguments. When the module is
32 // finished, the values in the array will be sorted in
33 // ascending order.
34 Module insertionSort(Integer Ref array[], Integer arraySize)
35 // Loop counter
36 Declare Integer index
37
38 // Variable used to scan through the array.
39 Declare Integer scan
40
41 // Variable to hold the first unsorted value.
42 Declare Integer unsortedValue
43
44 // The outer loop steps the index variable through
45 // each subscript in the array, starting at 1. This
46 // is because element 0 is considered already sorted.
47 For index = 1 To arraySize - 1
48

9.3 The Insertion Sort Algorithm 361

49 // The first element outside the sorted subset is
50 // array[index]. Store the value of this element
51 // in unsortedValue.
52 Set unsortedValue = array[index]
53
54 // Start scan at the subscript of the first element
55 // outside the sorted subset.
56 Set scan = index
57
58 // Move the first element outside the sorted subset
59 // into its proper position within the sorted subset.
60 While scan > 0 AND array[scan-1] > unsortedValue
61 Set array[scan] = array[scan-1]
62 Set scan = scan - 1
63 End While
64
65 // Insert the unsorted value in its proper position
66 // within the sorted subset.
67 Set array[scan] = unsortedValue
68 End For
69 End Module

Program Output

Original order:
4
6
1
3
5
2

Sorted order:
1
2
3
4
5
6

362 Chapter 9 Sorting and Searching Arrays

index <=
arraySize – 1

Declare Integer index
Declare Integer scan

Declare Integer
unsortedValue

Set unsortedValue =
array[index]

Set scan = index

scan > 0 AND
array[scan–1] >
unsortedValue

Set index = 1

True

True

Set array[scan] =
array[scan–1]

Set scan =
scan – 1

Return

False

insertionSort
(Integer Ref array[],
Integer arraySize)

False

Set array[scan] =
unsortedValue

Set index =
index + 1

Figure 9-24 Flowchart for the insertionSort module

9.4 The Binary Search Algorithm 363

Checkpoint

9.1 Which of the sorting algorithms discussed makes several passes through an
array and causes the larger values to move gradually toward the end of the
array with each pass?

9.2 One of the sorting algorithms discussed works like this: It begins by sorting
the first two elements of the array, which becomes a sorted subset. Then the
third element is moved to its correct position relative to the first two elements.
At that point the first three elements become the sorted subset. This process
continues with the fourth and subsequent elements until the entire array is
sorted. Which algorithm is this?

9.3 One of the sorting algorithms discussed works like this: The smallest value in
the array is located and moved to element 0. Then the next smallest value
is located and moved to element 1. This process continues until all of the
elements have been placed in their proper order. Which algorithm is this?

9.4 The Binary Search Algorithm

CONCEPT: The binary search algorithm is much more efficient than the sequential
search, which was discussed in Chapter 8. The binary search algorithm
locates an item in an array by repeatedly dividing the array in half.
Each time it divides the array, it eliminates the half of the array that
does not contain the item.

Chapter 8 discussed the sequential search algorithm, which uses a loop to step sequen-
tially through an array, starting with the first element. It compares each element with
the value being searched for and stops when the value is found or the end of the array
is encountered. If the value being searched for is not in the array, the algorithm unsuc-
cessfully searches to the end of the array.

The advantage of the sequential search is its simplicity: It is very easy to understand
and implement. Furthermore, it doesn’t require the data in the array to be stored in any
particular order. Its disadvantage, however, is its inefficiency. If the array being
searched contains 20,000 elements, the algorithm will have to look at all 20,000 ele-
ments in order to find a value stored in the last element.

In an average case, an item is just as likely to be found near the beginning of an array
as near the end. Typically, for an array of n items, the sequential search will locate an
item in n/2 attempts. If an array has 50,000 elements, the sequential search will make a
comparison with 25,000 of them in a typical case. This is assuming, of course, that the
search item is consistently found in the array. (n/2 is the average number of compar-
isons. The maximum number of comparisons is always n.)

364 Chapter 9 Sorting and Searching Arrays

When the sequential search fails to locate an item, it must make a comparison with
every element in the array. As the number of failed search attempts increases, so does
the average number of comparisons. Although the sequential search algorithm is ade-
quate for small arrays, it should not be used on large arrays if speed is important.

The binary search is a clever algorithm that is much more efficient than the sequential
search. Its only requirement is that the values in the array must be sorted in ascending
order. Instead of testing the array’s first element, this algorithm starts with the element
in the middle. If that element happens to contain the desired value, then the search is
over. Otherwise, the value in the middle element is either greater than or less than the
value being searched for. If it is greater, then the desired value (if it is in the list) will be
found somewhere in the first half of the array. If it is less, then the desired value (again,
if it is in the list) will be found somewhere in the last half of the array. In either case,
half of the array’s elements have been eliminated from further searching.

If the desired value isn’t found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm tests its middle element. If the desired value isn’t
found there, the search is narrowed to the quarter of the array that resides before or af-
ter that element. This process continues until the value being searched for is either
found or there are no more elements to test.

Figure 9-25 shows a flowchart for a function that performs the binary search algo-
rithm. The function accepts an Integer array, an Integer value to search the array
for, and an Integer that specifies the array’s size. If the value is found in the array, the
function returns the subscript of the element containing the value. If the value is not
found in the array, the function returns –1. Program 9-7 shows the binarySearch
function in pseudocode. Note that the pseudocode shown in Program 9-7 is only the
binarySearch function and not a complete program.

This algorithm uses three variables to mark positions within the array: first, last,
and middle. The first and last variables mark the boundaries of the portion of the
array currently being searched. They are initialized with the subscripts of the array’s
first and last elements. The subscript of the element halfway between first and
last is calculated and stored in the middle variable. If the element in the middle of the
array does not contain the search value, the first or last variables are adjusted so
that only the top or bottom half of the array is searched during the next iteration. This
cuts the portion of the array being searched in half each time the loop fails to locate the
search value.

9.4 The Binary Search Algorithm 365

Program 9-7 binarySearch function
(not a complete program)

1 // The binarySearch function accepts as arguments an Integer
2 // array, a value to search the array for, and the size
3 // of the array. If the value is found in the array, its
4 // subscript is returned. Otherwise, -1 is returned,
5 // indicating that the value was not found in the array.
6 Function Integer binarySearch(Integer array[], Integer value,
7 Integer arraySize)
8 // Variable to hold the subscript of the first element.
9 Declare Integer first = 0
10
11 // Variable to hold the subscript of the last element.
12 Declare Integer last = arraySize - 1
13
14 // Position of the search value
15 Declare Integer position = -1
16
17 // Flag
18 Declare Boolean found = False
19
20 // Variable to hold the subscript of the midpoint.
21 Declare Integer middle
22
23 While (NOT found) AND (first <= last)
24 // Calculate the midpoint.
25 Set middle = (first + last) / 2
26
27 // See if the value is found at the midpoint...
28 If array[middle] == value Then
29 Set found = True
30 Set position = middle
31
32 // Else, if the value is in the lower half...
33 Else If array[middle] > value Then
34 Set last = middle - 1
35
36 // Else, if the value is in the upper half...
37 Else
38 Set first = middle + 1
39 End If
40 End While
41
42 // Return the position of the item, or -1
43 // if the item was not found.
44 Return position
45 End Function

366 Chapter 9 Sorting and Searching Arrays

(NOT found) AND
(first <= last)

Declare Integer first = 0
Declare Integer last = arraySize – 1
Declare Integer position = –1
Declare Boolean found = False
Declare Integer middle

Set middle =
(first + last) / 2

Set found = True

array[middle] ==
value

True

True

Set position = middle

Return position

False

binarySearch
(Integer array[],
Integer value,

Integer arraySize)

False

array[middle] >
value

Set last = middle – 1

TrueFalse

Set first = middle + 1

Figure 9-25 Flowchart for the binarySearch function

Efficiency of a Binary Search
Obviously, a binary search is much more efficient than a sequential search. Every time
a binary search makes a comparison and fails to find the desired item, it eliminates half
of the remaining portion of the array that must be searched. For example, consider an
array with 1,000 elements. If a binary search fails to find an item on the first attempt,
the number of elements that remains to be searched is 500. If the item is not found on
the second attempt, the number of elements that remains to be searched is 250. This
process continues until the binary search has either located the desired item or deter-
mined that it is not in the array. With 1,000 elements this takes no more than 10 com-
parisons. (Compare this to a sequential search, which would make an average of 500
comparisons!)

9.4 The Binary Search Algorithm 367

In the Spotlight:
Using the Binary Search Algorithm
Constance manages a cooking school that employees six instructors. She has asked you
to design a program that she can use to look up an instructor’s phone number. You de-
cide to use two parallel arrays: one named names that will hold the instructors’ last
names, and another named phones that will hold each instructor’s phone number.
Here is the general algorithm:

1. Get an instructor’s last name from the user.
2. Search for the name in the names array.
3. If the name is found, get its subscript. Use the subscript to display the contents

of the parallel phones array. If the name is not found, display a message indicat-
ing so.

Program 9-8 shows the pseudocode for the program. Note that the array contents are
already sorted in ascending order. This is important because the program uses the
binary search algorithm to locate a name in the names array.

Program 9-8

1 Module main()
2 // Constant for array sizes
3 Constant Integer SIZE = 6
4
5 // Array of instructor names, already sorted in
6 // ascending order.
7 Declare String names[SIZE] = "Hall", "Harrison",
8 "Hoyle", "Kimura",
9 "Lopez", "Pike"
10
11 // Parallel array of instructor phone numbers.
12 Declare String phones[SIZE] = "555-6783", "555-0199",
13 "555-9974", "555-2377",
14 "555-7772", "555-1716"
15
16 // Variable to hold the last name to search for.
17 Declare String searchName
18
19 // Variable to hold the subscript of the name.
20 Declare Integer index
21
22 // Variable to control the loop.
23 Declare String again = "Y"
24
25 While (again == "Y" OR again == "y")
26 // Get the name to search for.
27 Display "Enter a last name to search for."
28 Input searchName
29
30 // Search for the last name.
31 index = binarySearch(names, searchName, SIZE)

368 Chapter 9 Sorting and Searching Arrays

32
33 If index ! = -1 Then
34 // Display the phone number.
35 Display "The phone number is ", phones[index]
36 Else
37 // The name was not found in the array.
38 Display searchName, " was not found."
39 End If
40
41 // Search again?
42 Display "Do you want to search again? (Y=Yes, N=No)"
43 Input again
44 End While
45
46 End Module
47
48 // The binarySearch function accepts as arguments a String
49 // array, a value to search the array for, and the size
50 // of the array. If the value is found in the array, its
51 // subscript is returned. Otherwise, -1 is returned,
52 // indicating that the value was not found in the array.
53 Function Integer binarySearch(String array[], String value,
54 Integer arraySize)
55 // Variable to hold the subscript of the first element.
56 Declare Integer first = 0
57
58 // Variable to hold the subscript of the last element.
59 Declare Integer last = arraySize - 1
60
61 // Position of the search value
62 Declare Integer position = -1
63
64 // Flag
65 Declare Boolean found = False
66
67 // Variable to hold the subscript of the midpoint.
68 Declare Integer middle
69
70 While (NOT found) AND (first <= last)
71 // Calculate the midpoint.
72 Set middle = (first + last) / 2
73
74 // See if the value is found at the midpoint...
75 If array[middle] == value Then
76 Set found = True
77 Set position = middle
78
79 // Else, if the value is in the lower half...
80 Else If array[middle] > value Then
81 Set last = middle - 1
82
83 // Else, if the value is in the upper half...
84 Else
85 Set first = middle + 1
86 End If
87 End While

Review Questions 369

88
89 // Return the position of the item, or -1
90 // if the item was not found.
91 Return position
92 End Function

Program Output (with Input Shown in Bold)

Enter a last name to search for.
Lopez [Enter]
The phone number is 555-7772
Do you want to search again? (Y=Yes, N=No)
Y [Enter]
Enter a last name to search for.
Harrison [Enter]
The phone number is 555-0199
Do you want to search again? (Y=Yes, N=No)
Y [Enter]
Enter a last name to search for.
Lee [Enter]
Lee was not found.
Do you want to search again? (Y=Yes, N=No)
N [Enter]

Checkpoint

9.4 Describe the difference between a sequential search and a binary search.

9.5 On average, with an array of 1,000 elements, how many comparisons will
a sequential search perform? (Assume the items being searched for are
consistently found in the array.)

9.6 With an array of 1,000 elements, what is the maximum number of comparisons
a binary search will perform?

Review Questions

Multiple Choice

1. This type of algorithm rearranges the values stored in an array in some particular
order.

a. search algorithm
b. sorting algorithm
c. ordering algorithm
d. selection algorithm

2. If an array is sorted in this order, the values are stored from lowest to highest.

a. asymptotic
b. logarithmic
c. ascending
d. descending

370 Chapter 9 Sorting and Searching Arrays

3. If an array is sorted in this order, the values are stored from highest to lowest.

a. asymptotic
b. logarithmic
c. ascending
d. descending

4. This algorithm makes several passes through an array and causes the larger values
to gradually move toward the end of the array with each pass.

a. bubble sort
b. selection sort
c. insertion sort
d. sequential sort

5. In this algorithm, the smallest value in the array is located and moved to element 0.
Then the next smallest value is located and moved to element 1. This process con-
tinues until all of the elements have been placed in their proper order.

a. bubble sort
b. selection sort
c. insertion sort
d. sequential sort

6. This algorithm begins by sorting the first two elements of the array, which become
a sorted subset. Then, the third element is moved to its correct position relative to
the first two elements. At that point, the first three elements become the sorted sub-
set. This process continues with the fourth and subsequent elements until the entire
array is sorted.

a. bubble sort
b. selection sort
c. insertion sort
d. sequential sort

7. This search algorithm steps sequentially through an array, comparing each item
with the search value.

a. sequential search
b. binary search
c. natural order search
d. selection search

8. This search algorithm repeatedly divides the portion of an array being searched in
half.

a. sequential search
b. binary search
c. natural order search
d. selection search

9. This search algorithm is adequate for small arrays but not large arrays.

a. sequential search
b. binary search
c. natural order search
d. selection search

Review Questions 371

10. This search algorithm requires that the array’s contents be sorted.

a. sequential search
b. binary search
c. natural order search
d. selection search

True or False

1. If data is sorted in ascending order, it means it is ordered from lowest value to
highest value.

2. If data is sorted in descending order, it means it is ordered from lowest value to
highest value.

3. Regardless of the programming language being used, it is not possible to use the
bubble sort algorithm to sort strings.

4. The average number of comparisons performed by the sequential search algo-
rithm on an array of n elements is n/2 (assuming the search values are consis-
tently found).

5. The maximum number of comparisons performed by the sequential search algo-
rithm on an array of n elements is n/2 (assuming the search values are consis-
tently found).

Algorithm Workbench

1. Design a swap module that accepts two arguments of the Real data type and
swaps them.

2. What algorithm does the following pseudocode perform?
Declare Integer maxElement
Declare Integer index

For maxElement = arraySize - 1 To 0 Step -1
For index = 0 To maxElement - 1

If array[index] > array[index + 1] Then
Call swap(array[index], array[index + 1])

End If
End For

End For

3. What algorithm does the following pseudocode perform?
Declare Integer index
Declare Integer scan
Declare Integer unsortedValue

For index = 1 To arraySize - 1
Set unsortedValue = array[index]
Set scan = index

While scan > 0 AND array[scan-1] < array[scan]
Call swap(array[scan-1], array[scan])
Set scan = scan - 1

End While

372 Chapter 9 Sorting and Searching Arrays

Set array[scan] = unsortedValue
End For

4. What algorithm does the following pseudocode perform?
Declare Integer startScan

Declare Integer minIndex
Declare Integer minValue
Declare Integer index

For startScan = 0 To arraySize - 2
Set minIndex = startScan
Set minValue = array[startScan]

For index = startScan + 1 To arraySize - 1
If array[index] < minValue

Set minValue = array[index]
Set minIndex = index

End If
End For

Call swap(array[minIndex], array[startScan])
End For

Short Answer

1. If a sequential search function is searching for a value that is stored in the last
element of a 10,000-element array, how many elements will the search code have
to read to locate the value?

2. In an average case involving an array of n elements, how many times will a sequential
search function have to read the array to locate a specific value?

3. A binary search function is searching for a value that happens to be stored in the
middle element of an array. How many times will the function read an element in
the array before finding the value?

4. What is the maximum number of comparisons that a binary search function will
make when searching for a value in a 1,000-element array?

5. Why is the bubble sort inefficient for large arrays?

6. Why is the selection sort more efficient than the bubble sort on large arrays?

7. List the steps that the selection sort algorithm would make in sorting the following
values: 4, 1, 3, 2.

8. List the steps that the insertion sort algorithm would make in sorting the following
values: 4, 1, 3, 2.

Programming Exercises 373

Debugging Exercise
1. Assume the following main module is in a program that includes the binarySearch

function that was shown in this chapter. Why doesn't the pseudocode in the main
module work?
// This program uses the binarySearch function to search for a
// name in the array. This program assumes the binarySearch
// function has already been defined.
Module main()

Constant Integer SIZE = 5

Declare String names[SIZE] = "Zack", "James", "Pam",
"Marc", "Susan"

Declare String searchName
Declare Integer index

Display "Enter a name to search for."
Input searchName

Set index = binarySearch(names, searchName, SIZE)

If index != -1 Then
Display searchName, " was found."

Else
Display searchName, " was NOT found."

End If
End Module

Programming Exercises
1. Sorted Golf Scores

Design a program that asks the user to enter 10 golf scores. The scores should be
stored in an Integer array. Sort the array in ascending order and display its contents.

2. Sorted Names

Design a program that allows the user to enter 20 names into a String array. Sort
the array in ascending (alphabetical) order and display its contents.

3. Rainfall Program Modification

Recall that Programming Exercise 3 in Chapter 8 asked you to design a program
that lets the user enter the total rainfall for each of 12 months into an array. The
program should calculate and display the total rainfall for the year, the average
monthly rainfall, and the months with the highest and lowest amounts. Enhance the
program so it sorts the array in ascending order and displays the values it contains.

4. Name Search

Modify the Sorted Names program that you wrote for exercise #2 so it allows you
to search the array for a specific name.

5. Charge Account Validation

Recall that Programming Exercise 5 in Chapter 8 asked you to design a program
that asks the user to enter a charge account number. The program should deter-
mine whether the number is valid by comparing it to a list of valid charge account
numbers. Modify the program so it uses the binary search algorithm instead of the
sequential search algorithm.

Sorted Golf Scores

VideoNote

374 Chapter 9 Sorting and Searching Arrays

6. Phone Number Lookup

Recall that Programming Exercise 7 in Chapter 8 asked you to design a program
with two parallel arrays: a String array named people and a String array
named phoneNumbers. The program allows you to search for a person’s name in
the people array. If the name is found, it displays that person’s phone number.
Modify the program so it uses the binary search algorithm instead of the sequential
search algorithm.

7. Search Benchmarks

Design an application that has an array of at least 20 integers. It should call a
module that uses the sequential search algorithm to locate one of the values. The
module should keep a count of the number of comparisons it makes until it finds
the value. Then the program should call another module that uses the binary
search algorithm to locate the same value. It should also keep a count of the num-
ber of comparisons it makes. Display these values on the screen.

8. Sorting Benchmarks

Modify the modules presented in this chapter that perform the bubble sort, selec-
tion sort, and insertion sort algorithms on an Integer array, such that each mod-
ule keeps a count of the number of swaps it makes.

Then, design an application that uses three identical arrays of at least 20 integers.
It should call each module on a different array, and display the number of swaps
made by each algorithm.

TOPICS

10.1 Introduction to File Input and Output

10.2 Using Loops to Process Files

10.3 Using Files and Arrays

10.4 Processing Records

10.5 Control Break Logic

Files

10.1 Introduction to File Input and Output

CONCEPT: When a program needs to save data for later use, it writes the data in a
file. The data can be read from the file at a later time.

The programs you have designed so far require the user to reenter data each time the
program runs, because data that is stored in variables in RAM disappears once the pro-
gram stops running. If a program is to retain data between the times it runs, it must
have a way of saving it. Data is saved in a file, which is usually stored on a computer’s
disk. Once the data is saved in a file, it will remain there after the program stops run-
ning. Data that is stored in a file can be retrieved and used at a later time.

Most of the commercial software packages that you use on a day-to-day basis store
data in files. The following are a few examples:

● Word processors: Word processing programs are used to write letters, memos,
reports, and other documents. The documents are then saved in files so they can
be edited and printed.

● Image editors: Image editing programs are used to draw graphics and edit images
such as the ones that you take with a digital camera. The images that you create
or edit with an image editor are saved in files.

● Spreadsheets: Spreadsheet programs are used to work with numerical data. Num-
bers and mathematical formulas can be inserted into the rows and columns of the
spreadsheet. The spreadsheet can then be saved in a file for use later.

10

375

C
H

A
P

T
E

R

376 Chapter 10 Files

● Games: Many computer games keep data stored in files. For example, some
games keep a list of player names with their scores stored in a file. These games
typically display the players’ names in order of their scores, from highest to low-
est. Some games also allow you to save your current game status in a file so you
can quit the game and then resume playing it later without having to start from
the beginning.

● Web browsers: Sometimes when you visit a Web page, the browser stores a small
file known as a cookie on your computer. Cookies typically contain information
about the browsing session, such as the contents of a shopping cart.

Programs that are used in daily business operations rely extensively on files. Payroll
programs keep employee data in files, inventory programs keep data about a com-
pany’s products in files, accounting systems keep data about a company’s financial
operations in files, and so on.

Programmers usually refer to the process of saving data in a file as “writing data to”
the file. When a piece of data is written to a file, it is copied from a variable in RAM
to the file. This is illustrated in Figure 10-1. The term output file is used to describe
a file that data is written to. It is called an output file because the program stores out-
put in it.

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

7451Z
Variable
employeeID

18.65
Variable
payRate

Data is copied from
variables to the file.

A file on the disk

Figure 10-1 Writing data to a file

The process of retrieving data from a file is known as “reading data from” the file.
When a piece of data is read from a file, it is copied from the file into a variable
in RAM. Figure 10-2 illustrates this. The term input file is used to describe a file
that data is read from. It is called an input file because the program gets input from
the file.

10.1 Introduction to File Input and Output 377

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employeeName

7451Z
Variable
employeeID

18.65
Variable
payRate

Data is copied from
the file to variables.

A file on the disk

Figure 10-2 Reading data from a file

This chapter discusses how to design programs that write data to files and read data
from files. There are always three steps that must be taken when a file is used by a
program.

1. Open the file: Opening a file creates a connection between the file and the pro-
gram. Opening an output file usually creates the file on the disk and allows the
program to write data to it. Opening an input file allows the program to read
data from the file.

2. Process the file: In this step data is either written to the file (if it is an output file)
or read from the file (if it is an input file).

3. Close the file: When the program is finished using the file, the file must be closed.
Closing a file disconnects the file from the program.

Types of Files
In general, there are two types of files: text and binary. A text file contains data that has
been encoded as text, using a scheme such as ASCII or Unicode. Even if the file con-
tains numbers, those numbers are stored in the file as a series of characters. As a result,
the file may be opened and viewed in a text editor such as Notepad. A binary file con-
tains data that has not been converted to text. As a consequence, you cannot view the
contents of a binary file with a text editor.

File Access Methods
Most programming languages provide two different ways to access data stored in a
file: sequential access and direct access. When you work with a sequential access file,

378 Chapter 10 Files

you access data from the beginning of the file to the end of the file. If you want to read
a piece of data that is stored at the very end of the file, you have to read all of the data
that comes before it—you cannot jump directly to the desired data. This is similar to
the way cassette tape players work. If you want to listen to the last song on a cassette
tape, you have to either fast-forward over all of the songs that come before it or listen
to them. There is no way to jump directly to a specific song.

When you work with a direct access file (which is also known as a random access file),
you can jump directly to any piece of data in the file without reading the data that
comes before it. This is similar to the way a CD player or an MP3 player works. You
can jump directly to any song that you want to listen to.

This chapter focuses on sequential access files. Sequential access files are easy to work
with, and you can use them to gain an understanding of basic file operations.

Creating a File and Writing Data to It
Most computer users are accustomed to the fact that files are identified by a filename.
For example, when you create a document with a word processor and then save
the document in a file, you have to specify a filename. When you use a utility such as
Windows Explorer to examine the contents of your disk, you see a list of filenames.
Figure 10-3 shows how three files named cat.jpg, notes.txt, and resume.doc
might be represented in Windows Explorer.

Figure 10-3 Three files

Each operating system has its own rules for naming files. Many systems support the use
of filename extensions, which are short sequences of characters that appear at the end
of a filename preceded by a period (which is known as a “dot”). For example, the files
depicted in Figure 10-3 have the extensions .jpg, .txt, and .doc. The extension usually
indicates the type of data stored in the file. For example, the .jpg extension usually in-
dicates that the file contains a graphic image that is compressed according to the JPEG
image standard. The .txt extension usually indicates that the file contains text. The
.doc extension usually indicates that the file contains a Microsoft Word document.
(In this book we will use the .dat extension with all of the files we create in our pro-
grams. The .dat extension simply stands for “data.”)

When writing a program that performs an operation on a file, there are two names that
you have to work with in the program’s code. The first of these is the filename that
identifies the file on the computer’s disk. The second is an internal name that is similar
to a variable name. In fact, you usually declare a file’s internal name in a manner that
is similar to declaring a variable. The following example shows how we declare a name
for an output file in our pseudocode:

Declare OutputFile customerFile

10.1 Introduction to File Input and Output 379

This statement declares two things.

● The word OutputFile indicates the mode in which we will use the file. In our
pseudocode, OutputFile indicates that we will be writing data to the file.

● The name customerFile is the internal name we will use to work with the
output file in our code.

Although the syntax for making this declaration varies greatly among programming
languages, you typically have to declare both the mode in which you will use a file and
the file’s internal name before you can work with the file.

The next step is to open the file. In our pseudocode we will use the Open statement.
Here is an example:

Open customerFile "customers.dat"

The word Open is followed by an internal name that was previously declared, and then
a string that contains a filename. After this statement executes, a file named
customers.dat will be created on the disk, and we will be able to use the internal
name customerFile to write data to the file.

WARNING! Remember, when you open an output file you are creating the file on
the disk. In most languages, if a file with the specified external name already exists
when the file is opened, the contents of the existing file will be erased.

Writing Data to a File

Once you have opened an output file you can write data to it. In our pseudocode we
will use the Write statement to write data to a file. For example,

Write customerFile "Charles Pace"

writes the string "Charles Pace" to the file that is associated with customerFile. You
can also write the contents of a variable to a file, as shown in the following
pseudocode:

Declare String name = "Charles Pace"
Write customerFile name

The second statement in this pseudocode writes the contents of the name variable to the
file associated with customerFile. (These examples show a string being written
to a file, but you can also write numeric values.)

Closing an Output File

Once a program is finished working with a file, it should close the file. Closing a file
disconnects the program from the file. In some systems, failure to close an output file
can cause a loss of data. This happens because the data that is written to a file is first
written to a buffer, which is a small “holding section” in memory. When the buffer is
full, the computer’s operating system writes the buffer’s contents to the file. This tech-
nique increases the system’s performance, because writing data to memory is faster
than writing it to a disk. The process of closing an output file forces any unsaved data
that remains in the buffer to be written to the file.

380 Chapter 10 Files

In our pseudocode, we will use the Close statement to close a file. For example,

Close customerFile

closes the file that is associated with the name customerFile.

Program 10-1 shows the pseudocode for a sample program that opens an output
file, writes data to it, and then closes it. Figure 10-4 shows a flowchart for the pro-
gram. Because the Write statements are output operations, they are shown in
parallelograms.

End

Start

Write myFile
"John Locke"

Open myFile
"philosophers.dat"

Declare OutputFile
myFile

Write myFile
"David Hume"

Write myFile
"Edmund Burke"

Close myFile

Figure 10-4 Flowchart for Program 10-1

Program 10-1

1 // Declare an internal name for an output file.
2 Declare OutputFile myFile
3
4 // Open a file named philosophers.dat on
5 // the disk.

10.1 Introduction to File Input and Output 381

6 Open myFile "philosophers.dat"
7
8 // Write the names of three philosophers
9 // to the file.
10 Write myFile "John Locke"
11 Write myFile "David Hume"
12 Write myFile "Edmund Burke"
13
14 // Close the file.
15 Close myFile

The statement in line 2 declares the name myFile as the internal name for an output
file. Line 6 opens the file philosophers.dat on the disk and creates an association
between the file and the internal name myFile. This will allow us to use the name
myFile to work with the file philosophers.dat.

The statements in lines 10 through 12 write three items to the file. Line 10 writes the
string "John Locke", line 11 writes the string "David Hume", and line 12 writes the
string "Edmund Burke". Line 15 closes the file. If this were an actual program and
were executed, the three items shown in Figure 10-5 would be written to the
philosophers.dat file.

John Locke David Hume Edmund Burke

Beginning
of the file

End of
the file

Figure 10-5 Contents of the file philosophers.dat

Notice that the items in the file appear in the same order that they were written by the
program. “John Locke” is the first item, “David Hume” is the second item, and
“Edmund Burke” is the third item. You will see the significance of this when we read
data from the file momentarily.

Delimiters and the EOF Marker
Figure 10-5 shows that three items were written to the philosphers.dat file. In
most programming languages, the actual contents of the file would be more complex
than the figure shows. In many languages, a special character known as a delimiter is
written to a file after each item. A delimiter is simply a predefined character or set of
characters that marks the end of each piece of data. The delimiter’s purpose is to sep-
arate the different items that are stored in a file. The exact character or set of char-
acters that are used as delimiters varies from system to system.

In addition to delimiters, many systems write a special character or set of characters,
known as an end-of-file (EOF) marker, at the end of a file. The purpose of the EOF
marker is to indicate where the file’s contents end. The character that is used as the
EOF marker also varies among different systems. Figure 10-6 shows the layout of the
philosphers.dat file, with delimiters and an EOF marker.

382 Chapter 10 Files

Beginning
of the file

End of
the file

John Locke David Hume Edmund Burke EOFDelimiter Delimiter Delimiter

Figure 10-6 Contents of the file philosophers.dat with delimiters and the EOF marker

Reading Data from a File
To read data from an input file, you first declare an internal name that you will use
to reference the file. In pseudocode we will use a Declare statement such as this:

Declare InputFile inventoryFile

This statement declares two things.

● The word InputFile indicates the mode in which we will use the file. In our
pseudocode, InputFile indicates that we will be reading data from the file.

● The name inventoryFile is the internal name we will use to work with the
output file in our code.

As previously mentioned, the actual syntax for declaring a file mode and internal name
varies greatly among programming languages.

The next step is to open the file. In our pseudocode we will use the Open statement.
For example, in

Open inventoryFile "inventory.dat"

the word Open is followed by an internal name that was previously declared, and then
a string that contains a filename. After this statement executes, the file named
inventory.dat will be opened, and we will be able to use the internal name
inventoryFile to read data from the file.

Because we are opening the file for input, it makes sense that the file should already
exist. In most systems, an error will occur if you try to open an input file but the file
does not exist.

Reading Data

Once you have opened an input file you can read data from it. In our pseudocode we
will use the Read statement to read a piece of data from a file. The following is an
example (assume itemName is a variable that has already been declared).

Read inventoryFile itemName

This statement reads a piece of data from the file that is associated with
inventoryFile. The piece of data that is read from the file will be stored in the
itemName variable.

10.1 Introduction to File Input and Output 383

Closing an Input File

As previously mentioned, a program should close a file when it is finished working
with it. In our pseudocode, we will use the Close statement to close input files, in the
same way that we close output files. For example,

Close inventoryFile

closes the file that is associated with the name inventoryFile.

Program 10-2 shows the pseudocode for a program that opens the philosophers.dat
file that would be created by Program 10-1, reads the three names from the file, closes
the file, and then displays the names that were read. Figure 10-7 shows a flowchart for
the program. Notice that the Read statements are shown in parallelograms.

Figure 10-7 Flowchart for Program 10-2

End

Close myFile

A

Display name1

Display name2

Display name3

Display "Here are the
names of three
philosophers:"

Start

Read myFile
name1

Open myFile
"philosophers.dat"

Declare InputFile
myFile

Read myFile
name2

Read myFile
name3

A

Declare String name1,
name2, name3

384 Chapter 10 Files

Program 10-2

1 // Declare an internal name for an input file.
2 Declare InputFile myFile
3
4 // Declare three variables to hold values
5 // that will be read from the file.
6 Declare String name1, name2, name3
7
8 // Open a file named philosophers.dat on
9 // the disk.
10 Open myFile "philosophers.dat"
11
12 // Read the names of three philosophers
13 // from the file into the variables.
14 Read myFile name1
15 Read myFile name2
16 Read myFile name3
17
18 // Close the file.
19 Close myFile
20
21 // Display the names that were read.
22 Display "Here are the names of three philosophers:"
23 Display name1
24 Display name2
25 Display name3

Program Output

Here are the names of three philosophers:
John Locke
David Hume
Edmund Burke

The statement in line 2 declares the name myFile as the internal name for an input file.
Line 6 declares three String variables: name1, name2, and name3. We will use these
variables to hold the values read from the file. Line 10 opens the file philosophers.dat
on the disk and creates an association between the file and the internal name myFile.
This will allow us to use the name myFile to work with the file philosophers.dat.

When a program works with an input file, a special value known as a read position
is internally maintained for that file. A file’s read position marks the location of the
next item that will be read from the file. When an input file is opened, its read posi-
tion is initially set to the first item in the file. After the statement in line 10 executes,
the read position for the philosophers.dat file will be positioned as shown in
Figure 10-8.

10.1 Introduction to File Input and Output 385

Figure 10-8 Initial read position

Figure 10-9 Read position after the first Read statement

The Read statement in line 14 reads an item from the file’s current read position and
stores that item in the name1 variable. Once this statement executes, the name1 variable
will contain the string "John Locke". In addition, the file’s read position will be ad-
vanced to the next item in the file, as shown in Figure 10-9.

Another Read statement appears in line 15. This reads an item from the file’s current
read position and stores that value in the name2 variable. Once this statement executes,
the name2 variable will contain the string "David Hume". The file’s read position will
be advanced to the next item, as shown in Figure 10-10.

Another Read statement appears in line 16. This reads the next item from the file’s cur-
rent read position and stores that value in the name3 variable. Once this statement ex-
ecutes, the name3 variable will contain the string "Edmund Burke". The file’s read
position will be advanced to the EOF marker, as shown in Figure 10-11.

Read position

John Locke David Hume Edmund Burke EOFDelimiter Delimiter Delimiter

Figure 10-10 Read position after the second Read statement

Read position

John Locke David Hume Edmund Burke EOFDelimiter Delimiter Delimiter

Figure 10-11 Read position after the third Read statement

The statement in line 19 closes the file. The Display statements in lines 23 through
25 display the contents of the name1, name2, and name3 variables.

Read position

John Locke David Hume Edmund Burke EOFDelimiter Delimiter Delimiter

Read position

John Locke David Hume Edmund Burke EOFDelimiter Delimiter Delimiter

386 Chapter 10 Files

NOTE: Did you notice that Program 10-2 read the items in the philosophers.dat
file in sequence, from the beginning of the file to the end of the file? Recall from our
discussion at the beginning of the chapter that this is the nature of a sequential ac-
cess file.

Appending Data to an Existing File
In most programming languages, when you open an output file and a file with the spec-
ified external name already exists on the disk, the existing file will be erased and a new
empty file with the same name will be created. Sometimes you want to preserve an ex-
isting file and append new data to its current contents. Appending data to a file means
writing new data to the end of the data that already exists in the file.

Most programming languages allow you to open an output file in append mode, which
means the following:

● If the file already exists, it will not be erased. If the file does not exist, it will be
created.

● When data is written to the file, it will be written at the end of the file’s current
contents.

The syntax for opening an output file in append mode varies greatly from one language
to another. In pseudocode we will simply add the word AppendMode to the Declare
statement, as shown here:

Declare OutputFile AppendMode myFile

This statement declares that we will use the internal name myFile to open an output
file in append mode. For example, assume the file friends.dat exists and contains the
following names:

Joe
Rose
Greg
Geri
Renee

The following pseudocode opens the file and appends additional data to its existing
contents.

Declare OutputFile AppendMode myFile
Open myFile "friends.dat"
Write myFile "Matt"
Write myFile "Chris"
Write myFile "Suze"
Close myFile

After this program runs, the file friends.dat will contain the following data:

Joe
Rose
Greg
Geri
Renee

10.2 Using Loops to Process Files 387

Matt
Chris
Suze

Checkpoint

10.1 Where are files normally stored?

10.2 What is an output file?

10.3 What is an input file?

10.4 What three steps must be taken by a program when it uses a file?

10.5 In general, what are the two types of files? What is the difference between
these two types of files?

10.6 What are the two types of file access? What is the difference between these two?

10.7 When writing a program that performs an operation on a file, what two file-
associated names do you have to work with in your code?

10.8 In most programming languages, if a file already exists what happens to it if
you try to open it as an output file?

10.9 What is the purpose of opening a file?

10.10 What is the purpose of closing a file?

10.11 Generally speaking, what is a delimiter? How are delimiters typically used in
files?

10.12 In many systems, what is written at the end of a file?

10.13 What is a file’s read position? Initially, where is the read position when an
input file is opened?

10.14 In what mode do you open a file if you want to write data to it, but you do not
want to erase the file’s existing contents? When you write data to such a file, to
what part of the file is the data written?

10.2 Using Loops to Process Files

CONCEPT: Files usually hold large amounts of data, and programs typically use
a loop to process the data in a file.

Although some programs use files to store only small amounts of data, files are typi-
cally used to hold large collections of data. When a program uses a file to write or read
a large amount of data, a loop is typically involved. For example, look at the
pseudocode in Program 10-3. This program gets sales amounts for a series of days
from the user and stores those amounts in a file named sales.dat. The user specifies
the number of days of sales data he or she needs to enter. In the sample run of the pro-
gram, the user enters sales amounts for five days. Figure 10-12 shows the contents of

Using Loops to
Process Files

VideoNote

388 Chapter 10 Files

the sales.dat file containing the data entered by the user in the sample run.
Figure 10-13 shows a flowchart for the program.

Program 10-3

1 // Variable to hold the number of days
2 Declare Integer numDays
3
4 // Counter variable for the loop
5 Declare Integer counter
6
7 // Variable to hold an amount of sales
8 Declare Real sales
9
10 // Declare an output file.
11 Declare OutputFile salesFile
12
13 // Get the number of days.
14 Display "For how many days do you have sales?"
15 Input numDays
16
17 // Open a file named sales.dat.
18 Open salesFile "sales.dat"
19
20 // Get the amount of sales for each day and write
21 // it to the file.
22 For counter = 1 To numDays
23 // Get the sales for a day.
24 Display "Enter the sales for day #", counter
25 Input sales
26
27 // Write the amount to the file.
28 Write salesFile sales
29 End For
30
31 // Close the file.
32 Close salesFile
33 Display "Data written to sales.dat."

Program Output (with Input Shown in Bold)

For how many days do you have sales?
5 [Enter]
Enter the sales for day #1
1000.00 [Enter]
Enter the sales for day #2
2000.00 [Enter]
Enter the sales for day #3
3000.00 [Enter]
Enter the sales for day #4
4000.00 [Enter]
Enter the sales for day #5
5000.00 [Enter]
Data written to sales.dat.

10.2 Using Loops to Process Files 389

Reading a File with a Loop and
Detecting the End of the File
Quite often a program must read the contents of a file without knowing the number
of items that are stored in the file. For example, the sales.dat file that would be
created by Program 10-3 can have any number of items stored in it, because the pro-
gram asks the user for the number of days that he or she has sales amounts for. If the
user enters 5 as the number of days, the program gets 5 sales amounts and stores

1000.00 2000.00 3000.00 EOFDelimiter Delimiter Delimiter 4000.00 Delimiter 5000.00 Delimiter

Figure 10-12 Contents of the sales.dat file

Display "Enter the sales
for day #", counter

Input sales

Write salesFile sales

Set counter =
counter + 1

Close salesFile

Display "Data written to
sales.dat."

End

Set counter = 1

counter <= numDays

False

True

AStart

Display "For how many
days do you have

sales?"

Open salesFile
"sales.dat"

Declare Integer
numDays

Declare Integer counter
Declare Real sales

Declare OutputFile
salesFile

Input numDays

A

Figure 10-13 Flowchart for Program 10-3

390 Chapter 10 Files

them in the file. If the user enters 100 as the number of days, the program gets 100
sales amounts and stores them in the file.

This presents a problem if you want to write a program that processes all of the items
in the file, regardless of how many there are. For example, suppose you need to write a
program that reads all of the amounts in the file and calculates their total. You can use
a loop to read the items in the file, but an error will occur if the program tries to read
beyond the end of the file. The program needs some way of knowing when the end of
the file has been reached so it will not try to read beyond it.

Most programming languages provide a library function for this purpose. In our
pseudocode we will use the eof function. Here is the function’s general format:

eof(internalFileName)

The eof function accepts a file’s internal name as an argument, and returns True if
the end of the file has been reached or False if the end of the file has not been
reached. The pseudocode in Program 10-4 shows an example of how to use the eof
function. This program displays all of the sales amounts in the sales.dat file.

Program 10-4

1 // Declare an input file.
2 Declare InputFile salesFile
3
4 // Declare a variable to hold a sales amount
5 // that is read from the file.
6 Declare Real sales
7
8 // Open the sales.dat file.
9 Open salesFile "sales.dat"
10
11 Display "Here are the sales amounts:"
12
13 // Read all of the items in the file
14 // and display them.
15 While NOT eof(salesFile)
16 Read salesFile sales
17 Display currencyFormat(sales)
18 End While
19
20 // Close the file.
21 Close salesFile

Program Output

Here are the sales amounts:
$1,000.00
$2,000.00
$3,000.00
$4,000.00
$5,000.00

10.2 Using Loops to Process Files 391

Take a closer look at line 15:

While NOT eof(salesFile)

When you read this pseudocode, you naturally think: While not at the end of the file...
This statement could have been written as:

While eof(salesFile) == False

Although this is logically equivalent, most programmers will prefer to use the NOT
operator as shown in line 15 because it more clearly states the condition that is being
tested. Figure 10-14 shows a flowchart for the program.

Start

Display "Here are the
sales amounts:"

Open salesFile
"sales.dat"

Declare Real sales

Declare InputFile
salesFile

Read salesFile,
sales

Display
currencyFormat(sales)

Close salesFile

End

NOT eof(salesFile)

False

True

Figure 10-14 Flowchart for Program 10-4

392 Chapter 10 Files

In the Spotlight:
Working with Files
Kevin is a freelance video producer who makes TV commercials for local businesses.
When he makes a commercial, he usually films several short videos. Later, he puts these
short videos together to make the final commercial. He has asked you to design the fol-
lowing two programs:

1. A program that allows him to enter the running time (in seconds) of each short
video in a project. The running times are saved to a file.

2. A program that reads the contents of the file, displays the running times, and then
displays the total running time of all the segments.

Here is the general algorithm for the first program:

1. Get the number of videos in the project.
2. Open an output file.
3. For each video in the project:

Get the video’s running time.
Write the running time to the file.

4. Close the file.

Program 10-5 shows the pseudocode for the first program. Figure 10-15 shows a
flowchart.

Program 10-5

1 // Declare an output file.
2 Declare OutputFile videoFile
3
4 // A variable to hold the number of videos.
5 Declare Integer numVideos
6
7 // A variable to hold a video's running time.
8 Declare Real runningTime
9
10 // Counter variable for the loop
11 Declare Integer counter
12
13 // Get the number of videos.
14 Display "Enter the number of videos in the project."
15 Input numVideos
16
17 // Open an output file to save the running times.
18 Open videoFile "video_times.dat"
19
20 // Write each video's running times to the file.
21 For counter = 1 To numVideos
22 // Get the running time.
23 Display "Enter the running time for video #", counter
24 Input runningTime
25
26 // Write the running time to the file.

10.2 Using Loops to Process Files 393

27 Write videoFile runningTime
28 End For
29
30 // Close the file.
31 Close videoFile
32 Display "The times have been saved to video_times.dat."

Program Output (with Input Shown in Bold)

Enter the number of videos in the project.
6 [Enter]
Enter the running time for video #1
24.5 [Enter]
Enter the running time for video #2
12.2 [Enter]
Enter the running time for video #3
14.6 [Enter]
Enter the running time for video #4
20.4 [Enter]
Enter the running time for video #5
22.5 [Enter]
Enter the running time for video #6
19.3 [Enter]
The times have been saved to video_times.dat.

Display "Enter the
running time for
video #", counter

Input runningTime

Write videoFile
runningTime

Set counter =
counter + 1

Close videoFile

Display "The times have
been saved to

video_times.dat."

End

counter <=
numVideos

False

True

A

Set counter = 1

Start

Display "Enter the
number of videos in

the project."

Open videoFile
"video_times.dat"

Declare Integer numVideos
Declare Real runningTime

Declare Integer counter

Declare OutputFile
videoFile

Input numVideos

A

Figure 10-15 Flowchart for Program 10-5

394 Chapter 10 Files

Here is the general algorithm for the second program:

1. Initialize an accumulator to 0.
2. Open the input file.
3. While not at the end of the file:

Read a value from the file.
Add the value to the accumulator.

4. Close the file.
5. Display the contents of the accumulator as the total running time.

Program 10-6 shows the pseudocode for the second program. Figure 10-16 shows a
flowchart.

Program 10-6

1 // Declare an input file.
2 Declare InputFile videoFile
3
4 // A variable to hold a time
5 // that is read from the file.
6 Declare Real runningTime
7
8 // Accumulator to hold the total time,
9 // initialized to 0.
10 Declare Real total = 0
11
12 // Open the video_times.dat file.
13 Open videoFile "video_times.dat"
14
15 Display "Here are the running times, in seconds, of ",
16 "each video in the project:"
17
18 // Read all of the times in the file,
19 // display them, and calculate their total.
20 While NOT eof(videoFile)
21 // Read a time.
22 Read videoFile runningTime
23
24 // Display the time for this video.
25 Display runningTime
26
27 // Add runningTime to total.
28 Set total = total + runningTime
29 End While
30
31 // Close the file.
32 Close videoFile
33
34 // Display the total running time.
35 Display "The total running time of the videos is ",
36 total, " seconds."

10.2 Using Loops to Process Files 395

Start

Declare Real runningTime
Declare Real total = 0

Declare InputFile
videoFile

Close videoFile

End

NOT eof(videoFile)

False

True

Set total = total +
runningTime

Display "The total running
time of the videos is ",

total, " seconds."

Display "Here are the
running times, in seconds, of

each video in the project:"

Read videoFile,
runningTime

Open videoFile
"video_times.dat"

Display runningTime

Figure 10-16 Flowchart for Program 10-6

Program Output

Here are the running times, in seconds, of each video in the project:
24.5
12.2
14.6
20.4
22.5
19.3
The total running time of the videos is 113.5 seconds.

396 Chapter 10 Files

Checkpoint

10.15 Design an algorithm that uses a For loop to write the numbers 1 through 10
to a file.

10.16 What is the purpose of the eof function?

10.17 Is it acceptable for a program to attempt to read beyond the end of a file?

10.18 What would it mean if the expression eof(myFile) were to return True?

10.19 Which of the following loops would you use to read all of the items from the
file associated with myFile?

a. While eof(myFile)
Read myFile item

End While
b. While NOT eof(myFile)

Read myFile item
End While

10.3 Using Files and Arrays

CONCEPT: For some algorithms, files and arrays can be used together effectively.
You can easily write a loop that saves the contents of an array to a file,
and vice versa.

Some tasks may require you to save the contents of an array to a file so the data can be
used at a later time. Likewise, some situations may require you to read the data from a
file into an array. For example, suppose you have a file that contains a set of values that
appear in random order and you want to sort the values. One technique for sorting the
values in the file would be to read them into an array, perform a sorting algorithm on
the array, and then write the values in the array back to the file.

Saving the contents of an array to a file is a straightforward procedure: Open the file
and use a loop to step through each element of the array, writing its contents to the file.
For example, assume a program declares an array as:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE] = 10, 20, 30, 40, 50

The following pseudocode opens a file named values.dat and writes the contents of
each element of the numbers array to the file:

// Counter variable to use in the loop.
Declare Integer index
// Declare an output file.
Declare OutputFile numberFile
// Open the values.dat file.
Open numberFile "values.dat"

10.3 Using Files and Arrays 397

// Write each array element to the file.
For index = 0 To SIZE - 1

Write numberFile numbers[index]
End For
// Close the file.
Close numberFile

Reading the contents of a file into an array is also straightforward: Open the file and
use a loop to read each item from the file, storing each item in an array element. The
loop should iterate until either the array is filled or the end of the file is reached. For ex-
ample, assume a program declares an array as:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE]

The following pseudocode opens a file named values.dat and reads its contents into
the numbers array:

// Counter variable to use in the loop, initialized
// with 0.
Declare Integer index = 0
// Declare an input file.
Declare InputFile numberFile
// Open the values.dat file.
Open numberFile "values.dat"
// Read the contents of the file into the array.
While (index <= SIZE – 1) AND (NOT eof(numberFile))

Write numberFile numbers[index]
Set index = index + 1

End While
// Close the file.
Close numberFile

Notice that the While loop tests two conditions. The first condition is index <=
SIZE – 1. The purpose of this condition is to prevent the loop from writing beyond
the end of the array. When the array is full, the loop will stop. The second condition is
NOT eof(numberFile). The purpose of this condition is to prevent the loop from
reading beyond the end of the file. When there are no more values to read from the file,
the loop will stop.

10.4 Processing Records

CONCEPT: The data that is stored in a file is frequently organized in records. A
record is a complete set of data about an item, and a field is an individ-
ual piece of data within a record.

When data is written to a file, it is often organized into records and fields. A record is
a complete set of data that describes one item, and a field is a single piece of data
within a record. For example, suppose we want to store data about employees in a file.
The file will contain a record for each employee. Each record will be a collection of
fields, such as name, ID number, and department. This is illustrated in Figure 10-17.

398 Chapter 10 Files

Writing Records
In pseudocode, we will write an entire record using a single Write statement. For
example, assume the variables name, idNumber, and department contain data about
an employee, and employeeFile is the file we will write the data to. We can write the
contents of these variables to the file with the following statement:

Write employeeFile name, idNumber, department

In the statement we have simply listed the variables, separated by commas, after the
file’s internal name. The pseudocode in Program 10-7 shows how this statement might
be used in a complete program.

Program 10-7

1 // Variables for the fields
2 Declare String name
3 Declare Integer idNumber
4 Declare String department
5
6 // A variable for the number of employee records.
7 Declare Integer numEmployees
8
9 // A counter variable for the loop
10 Declare Integer counter
11
12 // Declare an output file.
13 Declare OutputFile employeeFile
14
15 // Get the number of employees.
16 Display "How many employee records do ",
17 "you want to create?"
18 Input numEmployees
19
20 // Open a file named employees.dat.
21 Open employeeFile "employees.dat"
22
23 // Get each employee's data and write it
24 // to the file.

Ingrid Virgo 4587 Engineering

Record

Name
field

ID number
field

Department
field

Figure 10-17 Fields in a record

10.4 Processing Records 399

25 For counter = 1 To numEmployees
26 // Get the employee name.
27 Display "Enter the name of employee #", counter
28 Input name
29
30 // Get the employee ID number.
31 Display "Enter the employee's ID number."
32 Input idNumber
33
34 // Get the employee's department.
35 Display "Enter the employee's department."
36 Input department
37
38 // Write the record to the file.
39 Write employeeFile name, idNumber, department
40
41 // Display a blank line.
42 Display
43 End For
44
45 // Close the file.
46 Close employeeFile
47 Display "Employee records written to employees.dat."

Program Output (with Input Shown in Bold)

How many employee records do you want to create?
3 [Enter]
Enter the name of employee #1
Colleen Pickett [Enter]
Enter the employee's ID number.
7311 [Enter]
Enter the employee's department.
Accounting [Enter]

Enter the name of employee #2
Ryan Pryce [Enter]
Enter the employee's ID number.
8996 [Enter]
Enter the employee's department.
Security [Enter]

Enter the name of employee #3
Bonnie Dundee [Enter]
Enter the employee's ID number.
2301 [Enter]
Enter the employee's department.
Marketing [Enter]

Employee records written to employees.dat.

Lines 16 through 18 prompt the user for the number of employee records that he or she
wants to create. Inside the loop, the program gets an employee’s name, ID number, and
department. This data is written to the file in line 39. The loop iterates once for each
employee record.

400 Chapter 10 Files

DelimiterDelimiterDelimiterColleen Pickett 7311 AccountingDelimiter Ryan Pryce 8996 ... and so forth

Figure 10-19 File contents with a delimiter after each field

In the sample run of the program, the user enters data for three employees. The table
shown in Figure 10-18 shows how you can think of the resulting records that will be
written to the file. The file contains three records, one for each employee, and each
record has three fields.

Name ID Number Department

Colleen Pickett 7311 Accounting

Ryan Pryce 8996 Security

Bonnie Dundee 2301 Marketing

Figure 10-18 Records written to the employees.dat file

The way that fields and records are actually organized inside the file, however, varies
slightly from language to language. Earlier we mentioned that many systems write a
delimiter after each item in a file. Figure 10-19 shows how part of the file’s contents
might appear with a delimiter after each field.

NOTE: When records are created in a file, some systems write one type of delimiter
after each field and another type of delimiter after each record.

Reading Records
In pseudocode we will read an entire record from a file using a single Read statement.
The following statement shows how we can read three values from employeeFile into
the name, idNumber, and department variables:

Read employeeFile name, idNumber, department

The pseudocode in Program 10-8 shows a program that reads the records written to
the employees.dat file by Program 10-7.

Program 10-8

1 // Variables for the fields
2 Declare String name
3 Declare Integer idNumber
4 Declare String department
5
6 // Declare an input file.
7 Declare InputFile employeeFile
8
9 // Open a file named employees.dat.
10 Open employeeFile "employees.dat"

10.4 Processing Records 401

11
12 Display "Here are the employee records."
13
14 // Display the records in the file.
15 While NOT eof(employeeFile)
16 // Read a record from the file.
17 Read employeeFile name, idNumber, department
18
19 // Display the record.
20 Display "Name: ", name
21 Display "ID Number: ", idNumber
22 Display "Department: ", department
23
24 // Display a blank line.
25 Display
26 End For
27
28 // Close the file.
29 Close employeeFile

Program Output

Here are the employee records.
Name: Colleen Pickett
ID Number: 7311
Department: Accounting

Name: Ryan Pryce
ID Number: 8996
Department: Security

Name: Bonnie Dundee
ID Number: 2301
Department: Marketing

The File Specification Document
If you are a programmer for a company or an organization, you will most likely have
to write programs that read data from files that already exist. The files will probably be
stored on the company's servers, or on some other computer that is part of the com-
pany's information system. When this is the case, you will not know how the data is
organized inside the files. For that reason, companies and organizations usually have a
file specification document for each data file. A file specification document describes
the fields that are stored in a particular file, including their data types. A programmer
who has never previously worked with a particular file can consult that file's specifica-
tion document to learn how data is organized inside the file.

A company or organization might keep file specification documents stored as word
processing documents, PDF documents, or plain text documents. (In some cases, they
might be printed on paper.) The contents of a file specification document will look dif-
ferent from one organization to another, but in each case, it will provide the information

402 Chapter 10 Files

In the Spotlight:
Adding and Displaying Records
Midnight Coffee Roasters, Inc. is a small company that imports raw coffee beans from
around the world and roasts them to create a variety of gourmet coffees. Julie, the
owner of the company, has asked you to design a series of programs that she can use to
manage her inventory. After speaking with her, you have determined that a file is
needed to keep inventory records. Each record should have two fields to hold the fol-
lowing data:

● Description: a string containing the name of the coffee
● Quantity in inventory: the number of pounds in inventory, as a real number

that a programmer needs to work with a particular file. Figure 10-20 shows an exam-
ple of a file specification document for the employees.dat file that was used in Pro-
gram 10-7 and Program 10-8.

In this example, the file specification document shows the filename, a brief description
of the file's contents, and a list of fields in each record. Each field's data type is also
listed. In addition, the fields are listed in the order that they appear in each record. In
this case, the first field in a record holds the employee name, the second field holds the
ID number, and the third field holds the department name.

Managing Records
Applications that store records in a file typically require more capabilities than simply
writing and reading records. In the following In the Spotlight sections we will examine
algorithms for adding records to a file, searching a file for specific records, modifying a
record, and deleting a record.

Filename: employees.dat
Description: Each record contains data about an employee.

Field Description Data Type
Employee Name String
ID Number Integer
Department String

Figure 10-20 Example file specification document

10.4 Processing Records 403

Your first job is to design a program that can be used to add records to the file. Pro-
gram 10-9 shows the pseudocode, and Figure 10-21 shows a flowchart. Note that the
output file is opened in append mode. Each time the program is executed, the new
records will be added to the file’s existing contents.

Program 10-9

1 // Variables for the fields
2 Declare String description
3 Declare Real quantity
4
5 // A variable to control the loop.
6 Declare String another = "Y"
7
8 // Declare an output file in append mode.
9 Declare OutputFile AppendMode coffeeFile
10
11 // Open the file.
12 Open coffeeFile "coffee.dat"
13
14 While toUpper(another) == "Y"
15 // Get the description.
16 Display "Enter the description."
17 Input description
18
19 // Get the quantity on hand.
20 Display "Enter the quantity on hand ",
21 "(in pounds)."
22 Input quantity
23
24 // Append the record to the file.
25 Write coffeeFile description, quantity
26
27 // Determine whether the user wants to enter
28 // another record.
29 Display "Do you want to enter another record? ",
30 Display "(Enter Y for yes, or anything else for no.)"
31 Input another
32
33 // Display a blank line.
34 Display
35 End While
36
37 // Close the file.
38 Close coffeeFile
39 Display "Data appended to coffee.dat."

Program Output (with Input Shown in Bold)

Enter the description.
Brazilian Dark Roast [Enter]
Enter the quantity on hand (in pounds).
18 [Enter]
Do you want to enter another record?

404 Chapter 10 Files

(Enter Y for yes, or anything else for no.)
y [Enter]
Enter the description.
Sumatra Medium Roast [Enter]
Enter the quantity on hand (in pounds).
25 [Enter]
Do you want to enter another record?
(Enter Y for yes, or anything else for no.)
n [Enter]
Data appended to coffee.dat.

Start

Display "Enter the
description."

Declare String description
Declare Real quantity

Declare String another = "Y"

toUpper(another)
== "Y"

Display "Enter the
quantity on hand (in

pounds)."

Input quantity

Write coffeeFile
description, quantity

Input another

Display a blank line

Close coffeeFile

Display "Data appended
to coffee.dat."

End

True

False

Open coffeeFile
"coffee.dat"

Declare OutputFile
AppendMode coffeeFile

Display "Do you want to
enter another record?"

Display "(Enter Y for yes
or anything else for no.)"

Input description

Figure 10-21 Flowchart for Program 10-9

10.4 Processing Records 405

Your next job is to design a program that displays all of the records in the inventory
file. Program 10-10 shows the pseudocode and Figure 10-22 shows a flowchart.

Program 10-10

1 // Variables for the fields
2 Declare String description
3 Declare Real quantity
4
5 // Declare an input file.
6 Declare InputFile coffeeFile
7
8 // Open the file.
9 Open coffeeFile "coffee.dat"
10
11 While NOT eof(coffeeFile)
12 // Read a record from the file.
13 Read coffeeFile description, quantity
14
15 // Display the record.
16 Display "Description: ", description,
17 "Quantity: ", quantity, " pounds"
18 End While
19
20 // Close the file.
21 Close coffeeFile

Program Output

Description: Brazilian Dark Roast Quantity: 18 pounds
Description: Sumatra Medium Roast Quantity: 25 pounds

Start Declare String description
Declare Real quantity

NOT eof(coffeeFile) Read coffeeFile
description, quantity

Display "Description: ",
description, " Quantity: ",

quantity, " pounds"

Declare
InputFile coffeeFile

Close coffeeFile End

True

False

Open coffeeFile
"coffee.dat"

Figure 10-22 Flowchart for Program 10-10

406 Chapter 10 Files

In the Spotlight:
Searching for a Record
Julie has been using the first two programs that you designed for her. She now has sev-
eral records stored in the coffee.dat file, and has asked you to design another pro-
gram that she can use to search for records. She wants to be able to enter a string and
see a list of all the records containing that string in the description field. For example,
suppose the file contains the following records:

Description Quantity
Sumatra Dark Roast 12
Sumatra Medium Roast 30
Sumatra Decaf 20
Sumatra Organic Medium Roast 15

If she enters “Sumatra” as the value to search for, the program should display all of
these records. Program 10-11 shows the pseudocode, and Figure 10-23 shows the
flowchart for the program.

Notice that line 27 of the pseudocode uses the contains function. Recall from Chapter 6
that the contains function returns True if the first argument, a string, contains the sec-
ond argument, also a string.

Program 10-11

1 // Variables for the fields
2 Declare String description
3 Declare Real quantity
4
5 // A variable to hold the search value.
6 Declare String searchValue
7
8 // A Flag to indicate whether the value was found.
9 Declare Boolean found = False
10
11 // Declare an input file.
12 Declare InputFile coffeeFile
13
14 // Get the value to search for.
15 Display "Enter a value to search for."
16 Input searchValue
17
18 // Open the file.
19 Open coffeeFile "coffee.dat"
20
21 While NOT eof(coffeeFile)
22 // Read a record from the file.
23 Read coffeeFile description, quantity
24
25 // If the record contains the search value,
26 // then display it.
27 If contains(description, searchValue) Then

10.4 Processing Records 407

28 // Display the record.
29 Display "Description: ", description,
30 "Quantity: ", quantity, " pounds"
31
32 // Set the found flag to true.
33 Set found = True
34 End If
35 End While
36
37 // If the value was not found in the file,
38 // display a message indicating so.
39 If NOT found Then
40 Display searchValue, " was not found."
41 End If
42
43 // Close the file.
44 Close coffeeFile

Program Output (with Input Shown in Bold)

Enter a value to search for.
Sumatra [Enter]
Description: Sumatra Dark Roast Quantity: 12 pounds
Description: Sumatra Medium Roast Quantity: 30 pounds
Description: Sumatra Decaf Quantity: 20 pounds
Description: Sumatra Organic Medium Roast Quantity: 15 pounds

Start

Declare String description
Declare Real quantity

Declare String searchValue
Declare Boolean found = False

Input searchValue

Open coffeeFile
"coffee.dat"

Display "Enter a value
to search for."

Declare InputFile
coffeeFile

A

NOT eof(coffeeFile)

Close coffeeFile

End

True

False

A

Read coffeeFile
description, quantity

contains(description,
searchValue)

True

False

NOT found
True

Display searchValue,
" was not found."False

Set found = True

Display "Description: ",
description, " Quantity: ",

quantity, " pounds"

Figure 10-23 Flowchart for Program 10-11

408 Chapter 10 Files

In the Spotlight:
Modifying Records
Julie is very happy with the programs that you have designed so far. Your next job is to
design a program that she can use to modify the quantity field in an existing record.
This will allow her to keep the records up to date as coffee is sold or more coffee is
added to inventory.

To modify a record in a sequential file, you must create a second temporary file. You
copy all of the original file’s records to the temporary file, but when you get to the
record that is to be modified, you do not write its old contents to the temporary file.
Instead, you write its new modified values to the temporary file. Then, you finish copy-
ing any remaining records from the original file to the temporary file.

The temporary file then takes the place of the original file. You delete the original file
and rename the temporary file, giving it the name that the original file had on the com-
puter’s disk. Here is the general algorithm for your program:

1. Open the original file for input and create a temporary file for output.
2. Get the description field of the record to be modified and the new value for the

quantity field.
3. While not at the end of the original file:

Read a record.
If this record’s description field matches the description entered, then:

Write the new data to the temporary file.
Else write the existing record to the temporary file.

4. Close the original file and the temporary file.
5. Delete the original file.
6. Rename the temporary file, giving it the name of the original file.

Notice that at the end of the algorithm you delete the original file and then rename
the temporary file. Most programming languages provide a way to perform these
operations. In pseudocode we will use the Delete statement to delete a file on the
disk. You simply provide a string containing the name of the file that you wish to
delete, such as:

Delete "coffee.dat"

To change the name of a file, we will use the Rename statement. For example,

Rename "temp.dat", "coffee.dat"

indicates that we are changing the name of the file temp.dat to coffee.dat.

Program 10-12 shows the pseudocode for the program, and Figures 10-24 and 10-25
show the flowchart.

Program 10-12

1 // Variables for the fields
2 Declare String description
3 Declare Real quantity
4

10.4 Processing Records 409

5 // A variable to hold the search value.
6 Declare String searchValue
7
8 // A variable to hold the new quantity.
9 Declare Real newQuantity
10
11 // A Flag to indicate whether the value was found.
12 Declare Boolean found = False
13
14 // Declare an input file.
15 Declare InputFile coffeeFile
16
17 // Declare an output file to copy the original
18 // file to.
19 Declare OutputFile tempFile
20
21 // Open the original file.
22 Open coffeeFile "coffee.dat"
23
24 // Open the temporary file.
25 Open tempFile "temp.dat"
26
27 // Get the value to search for.
28 Display "Enter the coffee you wish to update."
29 Input searchValue
30
31 // Get the new quantity.
32 Display "Enter the new quantity."
33 Input newQuantity
34
35 While NOT eof(coffeeFile)
36 // Read a record from the file.
37 Read coffeeFile description, quantity
38
39 // Write either this record to the temporary
40 // file, or the new record if this is the
41 // one that is to be changed.
42 If description == searchValue Then
43 Write tempFile description, newQuantity
44 Set found = True
45 Else
46 Write tempFile description, quantity
47 End If
48 End While
49
50 // Close the original file.
51 Close coffeeFile
52
53 // Close the temporary file.
54 Close tempFile
55
56 // Delete the original file.
57 Delete "coffee.dat"
58
59 // Rename the temporary file.

410 Chapter 10 Files

60 Rename "temp.dat", "coffee.dat"
61
62 // Indicate whether the operation was successful.
63 If found Then
64 Display "The record was updated."
65 Else
66 Display searchValue, " was not found in the file."
67 End If

Program Output (with Input Shown in Bold)

Enter the coffee you wish to update.
Sumatra Medium Roast [Enter]
Enter the new quantity.
18 [Enter]
The record was updated.

Start

Declare String description
Declare Real quantity

Declare String searchValue
Declare Real newQuantity

Declare Boolean found = False

Input searchValue

Display "Enter the coffee
you wish to update."

AInput newQuantity

Display "Enter the new
quantity."

Declare InputFile coffeeFile

Declare OutputFile tempFile

Open coffeeFile "coffee.dat"

Open tempFile "temp.dat"

Figure 10-24 Flowchart for Program 10-12, part 1

10.4 Processing Records 411

NOT eof(coffeeFile)

Close coffeeFile

End

True

False

A

Read coffeeFile
description, quantity

description ==
searchValue

TrueFalse

found
True

Display "The record was
updated."

False

Write tempFile
description, newQuantity

Set found = True

Write tempFile
description, quantity

Close tempFile

Delete "coffee.dat"

Rename "temp.dat",
"coffee.dat"

Display searchValue,
" was not found in the file."

Figure 10-25 Flowchart for Program 10-12, part 2

412 Chapter 10 Files

TIP: If you are using a language that does not have built-in statements for deleting
and renaming files, you can perform the following steps after closing the original file
and the temporary file:

1. Open the original file for output. (This will erase the contents of the original
file.)

2. Open the temporary file for input.
3. Read each record in the temporary file and then write it to the original file.

(This copies all of the records from the temporary file to the original file.)
4. Close the original and temporary files.

A disadvantage to using this approach is that the additional steps of copying the
temporary file to the original file will slow the program down. Another disadvantage
is that the temporary file will remain on the disk. If the temporary file contains a
large amount of data, you might need to open it for output once again and then
immediately close it. This erases the file’s contents.

In the Spotlight:
Deleting Records
Your last task is to write a program that Julie can use to delete records from the
coffee.dat file. Like the process of modifying a record, the process of deleting
a record from a sequential access file requires that you create a second temporary
file. You copy all of the original file’s records to the temporary file, except for the
record that is to be deleted. The temporary file then takes the place of the original
file. You delete the original file and rename the temporary file, giving it the name
that the original file had on the computer’s disk. Here is the general algorithm for
your program:

1. Open the original file for input and create a temporary file for output.
2. Get the description field of the record to be deleted.
3. While not at the end of the original file:

Read a record.
If this record’s description field does not match the description entered, then:

Write the record to the temporary file.
4. Close the original file and the temporary file.
5. Delete the original file.
6. Rename the temporary file, giving it the name of the original file.

Program 10-13 shows the pseudocode for the program, and Figure 10-26 shows a
flowchart.

10.4 Processing Records 413

Program 10-13

1 // Variables for the fields
2 Declare String description
3 Declare Real quantity
4
5 // A variable to hold the search value.
6 Declare String searchValue
7
8 // Declare an input file.
9 Declare InputFile coffeeFile
10
11 // Declare an output file to copy the original
12 // file to.
13 Declare OutputFile tempFile
14
15 // Open the files.
16 Open coffeeFile "coffee.dat"
17 Open tempFile "temp.dat"
18
19 // Get the value to search for.
20 Display "Enter the coffee you wish to delete."
21 Input searchValue
22
23 While NOT eof(coffeeFile)
24 // Read a record from the file.
25 Read coffeeFile description, quantity
26
27 // If this is not the record to delete, then
28 // write it to the temporary file.
29 If description != searchValue Then
30 Write tempFile description, quantity
31 End If
32 End While
33
34 // Close the two files.
35 Close coffeeFile
36 Close tempFile
37
38 // Delete the original file.
39 Delete "coffee.dat"
40
41 // Rename the temporary file.
42 Rename "temp.dat", "coffee.dat"
43
44 Display "The file has been updated."

Program Output (with Input Shown in Bold)

Enter the coffee you wish to delete.
Sumatra Organic Medium Roast [Enter]
The file has been updated.

414 Chapter 10 Files

Checkpoint

10.20 What is a record? What is a field?

10.21 Describe the way that you use a temporary file in a program that modifies a
record in a sequential access file.

10.22 Describe the way that you use a temporary file in a program that deletes a
record from a sequential file.

NOT eof(coffeeFile)

Close coffeeFile

End

True

False

A

Read coffeeFile
description, quantity

description !=
searchValue

True

False

Write tempFile
description, quantity

Close tempFile

Delete "coffee.dat"

Rename "temp.dat"
"coffee.dat"

Display "The file has
been updated."

Start

Declare String description
Declare Real quantity

Declare String searchValue

Display "Enter the coffee
you wish to delete."

A

Declare InputFile coffeeFile

Declare OutputFile tempFile

Open coffeeFile "coffee.dat"

Open tempFile "temp.dat"

Figure 10-26 Flowchart for Program 10-13

10.5 Control Break Logic 415

10.5 Control Break Logic

CONCEPT: Control break logic interrupts (breaks) a program’s regular processing
to perform a different action when a control variable’s value changes or
the variable acquires a specific value. After the action is complete, the
program’s regular processing resumes.

Sometimes a program that performs an ongoing process must be periodically inter-
rupted so an action can take place. For example, consider a program that displays the
contents of a lengthy file in a console output window, as shown in Figure 10-27. Sup-
pose the window displays a maximum of 25 lines of output. If the program displays
more items than will fit in the window, some of the items will scroll out of view. To pre-
vent this from happening, the program can keep count of the number of items that
have been displayed. When 24 items have been displayed, the program can display a
message such as “Press any key to continue...” on the 25th line, and pause its output
until the user presses a key. When this happens, the program can resume, pausing each
time 24 items have been displayed.

Program 10-14 shows the pseudocode for a program that performs this operation. The
program displays the contents of a file named student_names.dat, which contains a
list of names. The program’s output will be similar to that shown in Figure 10-27.

24 items are displayed

The output is paused
after the 24th item

Allan Stewart
Allison Sanchez
Bernard Morris
Hannah Roberts
Jennifer Bailey
Keith Hunt
Lana Dunn
Mary McClean
Melisa Mercado
Nan Woodward
Paul Delaney
Peter Blanton
Petra Sharp
Rachel Torres
Raymond Barnes
Sarah Griffin
Stanley Hamilton
Stephanie Jenkins
Tanya Gibson
Thomas Diaz
Tervor Escobar
Val Davilia
Wes Emery
Will Schwatrz
Press any key to continue...

Figure 10-27 Pausing output after 24 items are displayed

Program 10-14

1 // A variable for a name read from the file.
2 Declare String name
3
4 // A variable to count lines.
5 Declare Integer lines = 0
6

416 Chapter 10 Files

7 // Declare an input file.
8 Declare InputFile nameFile
9
10 // Open the file.
11 Open nameFile "student_names.dat"
12
13 While NOT eof(nameFile)
14 // Read a name from the file.
15 Read nameFile name
16
17 // Display the name.
18 Display name
19
20 // Increment the line counter.
21 Set lines = lines + 1
22
23 If lines == 24 Then
24 // Pause output until the user presses a key.
25 Display "Press any key to continue..."
26 Input
27
28 // Reset the line counter.
29 Set lines = 0
30 End If
31 End While
32
33 // Close the file.
34 Close nameFile

Notice that the program declares an Integer variable named lines in line 5, and ini-
tializes the variable to 0. This variable is used in the loop to keep count of the number
of lines that have been displayed. Each time an item is displayed, the variable is incre-
mented in line 21. The If statement in line 23 determines whether the lines variable
is equal to 24. If this is true, the message “Press any key to continue...” in line 25 is dis-
played. In line 26 the Input statement is used to read a key stroke. (We did not store
the value of the key in a variable because we are not concerned with knowing which
key was pressed—we simply want to pause the program until the user presses a key.)
Then, in line 29 we reset the lines variable to 0. This allows the program to display
another 24 lines of output before pausing.

Using this type of logic, commonly called control break logic, the program performs
some ongoing task (such as processing the items in a file), but temporarily interrupts
the task when a control variable reaches a specific value or changes its value. When
this happens, some other action is performed and then the program resumes its ongo-
ing task.

Control break logic is used often in programs that print reports where data is organ-
ized into categories. The next In the Spotlight section shows an example of this, and
also introduces a new pseudocode statement: Print. We will use the Print statement
exactly like we use the Display statement, except the Print statement sends its out-
put to the printer. (The actual process of sending data to a printer varies greatly
among systems.)

10.5 Control Break Logic 417

In the Spotlight:
Using Control Break Logic
Dr. Shephard, the headmaster at Pinebrook Academy, has organized a fundraiser where
each student has an opportunity to collect donations. She has asked you to design a
program that prints a donation report. The report should show the amounts that each
student has collected, the total collected by each student, and the total of all donations.

Dr. Shephard has provided a file, donations.dat, that has all of the data that you will
need to generate the report. Figure 10-28 shows the file specification document for the file.

Figure 10-28 File specification document for donations.dat

Filename: donations.dat
Description: Contains the amounts of donations collected
 by each student, sorted by student ID

Field Description Data Type
Student ID Number Integer
Donation Amount Real

The file contains a record for each donation. Each record has two fields: one contain-
ing the ID number of the student who collected the donation (an Integer), and an-
other containing the amount of the donation (a Real). The records in the file are
already sorted in order of student ID numbers.

Here is an example of how the report should appear:

Pinebrook Academy Fundraiser Report

Student ID Donation Amount
=====================================
104 $250.00
104 $100.00
104 $500.00
Total donations for student: $850.00

105 $100.00
105 $800.00
105 $400.00
Total donations for student: $1,300.00

106 $350.00
106 $450.00
106 $200.00
Total donations for student: $1,000.00
Total of all donations: $3,150.00

418 Chapter 10 Files

Program 10-15 shows the pseudocode for the program. Let’s first look at the main
module and the printHeader module:

Program 10-15 Fundraiser report program:
main and printHeader modules

1 Module main()
2 // Print the report header.
3 Call printHeader()
4
5 // Print the details of the report.
6 Call printDetails()
7 End Module
8
9 // The printHeader module prints the report header.
10 Module printHeader()
11 Print "Pinebrook Academy Fundraiser Report"
12 Print
13 Print "Student ID Donation Amount"
14 Print "======================================"
15 End Module
16

In the main module, line 3 calls the printHeader module, which prints the report
header. Then, line 6 calls the printDetails module, which prints the body of the
report. The pseudocode for the printDetails module follows.

Program 10-15 Fundraiser report program (continued):
printDetails module

17 // The printDetails module prints the report details.
18 Module printDetails()
19 // Variables for the fields
20 Declare Integer studentID
21 Declare Real donation
22
23 // Accumulator variables
24 Declare Real studentTotal = 0
25 Declare Real total = 0
26
27 // A variable to use in the control
28 // break logic.
29 Declare Integer currentID
30
31 // Declare an input file and open it.
32 Declare InputFile donationsFile
33 Open donationsFile "donations.dat"
34

10.5 Control Break Logic 419

35 // Read the first record.
36 Read donationsFile studentID, donation
37
38 // Save the student ID number.
39 Set currentID = studentID
40
41 // Print the report details.
42 While NOT eof(donationsFile)
43 // Check the student ID field to see if
44 // it has changed.
45 If studentID != currentID Then
46 // Print the total for the student,
47 // followed by a blank line.
48 Print "Total donations for student: ",
49 currencyFormat(studentTotal)
50 Print
51
52 // Save the next student's ID number.
53 Set currentID = studentID
54
55 // Reset the student accumulator.
56 Set studentTotal = 0
57 End If
58
59 // Print the data for the donation.
60 Print studentID, Tab, currencyFormat(donation)
61
62 // Update the accumulators.
63 Set studentTotal = studentTotal + donation
64 Set total = total + donation
65
66 // Read the next record.
67 Read donationsFile, studentID, donation
68 End While
69
70 // Print the total for the last student.
71 Print "Total donations for student: ",
72 currencyFormat(studentTotal)
73
74 // Print the total of all donations.
75 Print "Total of all donations: ",
76 currencyFormat(total)
77
78 // Close the file.
79 Close donationsFile
80 End Module

420 Chapter 10 Files

Let’s take a closer look at the printDetails module. Here is a summary of the vari-
able declarations:

● Lines 20 and 21 declare the studentID and donation variables, which will hold
the field values for each record read from the file.

● Lines 24 and 25 declare the studentTotal and total variables. The
studentTotal is an accumulator that the program will use to calculate the total
donations that each student collects. The total variable is an accumulator that
will calculate the total of all donations.

● Line 29 declares the currentID variable. This will store the ID number of the
student whose donation total is currently being calculated.

● Line 32 declares donationsFile as an internal name associates with the
donations.dat file.

Line 33 opens the donations.dat file, and line 36 reads the first record. The values
that are read are stored in the studentID and donation variables.

Line 39 assigns the student ID that was read from the file to the currentID variable.
The currentID variable will hold the ID of the student whose records are currently be-
ing processed.

Line 42 is the beginning of the loop that processes the file. The If statement that ap-
pears in lines 45 through 57 contains the control break logic. It tests the control vari-
able, studentID, to determine whether it is not equal to currentID. If the two are not
equal, then the program has read a record with a student ID that is different from the
value stored in currentID. This means it has read the last record for the student whose
ID is stored in currentID, so the program momentarily breaks out of the process to
display the student’s total donations (lines 48 and 49), save the new student ID in
currentID (line 53), and reset the studentTotal accumulator (line 56).

Line 60 prints the contents of the current record. Lines 63 and 64 update the accu-
mulator variables. Line 67 reads the next record from the file. Once all the records
have been processed, lines 71 and 72 display the total donations for the last student,
lines 75 and 76 display the total of all donations, and line 79 closes the file. The
report that is printed by the program will appear similar to the sample report previ-
ously shown.

Figure 10-29 shows a flowchart for the printDetails module.

NOTE: The logic of this program assumes that the records in the donations.dat
file are already sorted by student ID. If the records are not sorted by student ID,
the sales report will not list all of the donations for each student together.

NOT eof(donationsFile)

Print "Total donations for
student: ", currencyFormat

(studentTotal)

studentID !=
currentID

Set currentID =
studentID

Set studentTotal = 0

True

False

Print studentID, Tab,
currencyFormat

(donation)

Set studentTotal =
studentTotal + donation

Set total =
total + donation

Read donationsFile
studentID, donation

Print "Total of all
donations: ",

currencyFormat(total)

Close donationsFile

Return

False

True

A

Print "Total donations for
student: ", currencyFormat

(studentTotal)

Print

printDetails()

Read donationsFile
studentID, donation

Declare Integer studentID
Declare Real donation

Declare Real studentTotal = 0
Declare Real total = 0

Declare Integer currentID

Set currentID =
studentID

A

Declare InputFile
donationsFile

Open donationFile
"donations.dat"

Figure 10-29 Flowchart for the printDetails module

10.5 Control Break Logic 421

422 Chapter 10 Files

Print Spacing Charts
When writing programs that print reports on paper, it is sometimes helpful to use a
print spacing chart to design the appearance of the printed report. A print spacing
chart is a sheet of paper that has a grid, similar to graph paper. Figure 10-30 shows an
example. Each box in the grid represents a space on the paper, and it can hold one
character. Numbers that are printed along the top and side of the chart allow you to
identify any space on the page. You simply fill in the report headers and other text in
the desired locations. Then, when writing code, you can use the chart to determine
where the report items should be located, how many blank spaces to print between
items, etc.

NOTE: You can also write Xs instead of 9s to represent variable data in the report;
however, it is a common practice to use 9s to represent digits, and Xs to represent
characters.

Figure 10-30 A print spacing chart

Figure 10-30 is an example of a print spacing chart for the donations program that
you saw in Program 10-15. Notice that the report header and other unchanging text
is written in the chart exactly as it is to appear in the report. Where the student ID
numbers and donation amounts are to be printed, we have written 9s to indicate the
positions of numeric digits.

Review Questions 423

Review Questions

Multiple Choice

1. A file that data is written to is known as a(n)

a. input file
b. output file
c. sequential access file
d. binary file

2. A file that data is read from is known as a(n)

a. input file
b. output file
c. sequential access file
d. binary file

3. Before a file can be used by a program, it must be

a. formatted
b. encrypted
c. closed
d. opened

4. When a program is finished using a file, it should do this.

a. erase the file
b. open the file
c. close the file
d. encrypt the file

5. The contents of this type of file can be viewed in an editor such as Notepad.

a. text file
b. binary file
c. English file
d. human-readable file

6. This type of file contains data that has not been converted to text.

a. text file
b. binary file
c. Unicode file
d. symbolic file

7. When working with this type of file, you access its data from the beginning of the
file to the end of the file.

a. ordered access
b. binary access
c. direct access
d. sequential access

424 Chapter 10 Files

8. When working with this type of file, you can jump directly to any piece of data in
the file without reading the data that comes before it.

a. ordered access
b. binary access
c. direct access
d. sequential access

9. This is a small “holding section” in memory that many systems write data to
before writing the data to a file.

a. buffer
b. variable
c. virtual file
d. temporary file

10. This is a character or set of characters that marks the end of a piece of data.

a. median value
b. delimiter
c. boundary marker
d. EOF marker

11. This is a character or set of characters that marks the end of a file.

a. median value
b. delimiter
c. boundary marker
d. EOF marker

12. This marks the location of the next item that will be read from a file.

a. input position
b. delimiter
c. pointer
d. read position

13. When a file is opened in this mode, data will be written at the end of the file’s
existing contents.

a. output mode
b. append mode
c. backup mode
d. read-only mode

14. The expression NOT eof(myFile) is equivalent to

a. eof(myFile) == True
b. eof(myFile)
c. eof(myFile) == False
d. eof(myFile) < 0

15. This is a single piece of data within a record.

a. field
b. variable
c. delimiter
d. subrecord

True or False

1. When working with a sequential access file, you can jump directly to any piece of
data in the file without reading the data that comes before it.

2. In most languages, when you open an output file and that file already exists on the
disk, the contents of the existing file will be erased.

3. The process of opening a file is only necessary with input files. Output files are
automatically opened when data is written to them.

4. The purpose of an EOF marker is to indicate where a field ends. Files typically
contain several EOF markers.

5. When an input file is opened, its read position is initially set to the first item in the
file.

6. When a file that already exists is opened in append mode, the file’s existing
contents are erased.

7. In control break logic, the program performs some ongoing task (such as process-
ing the items in a file), but permanently stops the task when a control variable
reaches a specific value or changes its value.

Short Answer

1. Describe the three steps that must be taken when a file is used by a program.

2. Why should a program close a file when it’s finished using it?

3. What is a file’s read position? Where is the read position when a file is first opened
for reading?

4. If an existing file is opened in append mode, what happens to the file’s existing
contents?

5. In most languages, if a file does not exist and a program attempts to open it in
append mode, what happens?

6. What is the purpose of the eof function that was discussed in this chapter?

7. What is control break logic?

Algorithm Workbench

1. Design a program that opens an output file with the external name my_name.dat,
writes your name to the file, and then closes the file.

2. Design a program that opens the my_name.dat file that was created by the algo-
rithm in question 1, reads your name from the file, displays the name on the
screen, and then closes the file.

3. Design an algorithm that does the following: opens an output file with the external
name number_list.dat, uses a loop to write the numbers 1 through 100 to the
file, and then closes the file.

Review Questions 425

426 Chapter 10 Files

4. Design an algorithm that does the following: opens the number_list.dat file that
was created by the algorithm created in question 3, reads all of the numbers from
the file and displays them, and then closes the file.

5. Modify the algorithm that you designed in question 4 so it adds all of the numbers
read from the file and displays their total.

6. Write pseudocode that opens an output file with the external name
number_list.dat, but does not erase the file’s contents if it already exists.

7. A file exists on the disk named students.dat. The file contains several records,
and each record contains two fields: (1) the student’s name, and (2) the student’s
score for the final exam. Design an algorithm that deletes the record containing
“John Perez” as the student name.

8. A file exists on the disk named students.dat. The file contains several records,
and each record contains two fields: (1) the student’s name, and (2) the student’s
score for the final exam. Design an algorithm that changes Julie Milan’s score to
100.

Debugging Exercise
1. Why doesn't the following pseudocode module work as indicated in the com-

ments?
// The readFile method accepts a string containing a filename as
// an argument. It reads and displays all the items in the file.
Module readFile(String filename)

// Declare an input file.
Declare InputFile file

// A variable to hold an item that is read from the file.
Declare String item

// Open the file using the filename.
Open file filename

// Read all the items in the file and display them.
While eof(file)

Read file item
Display item

End While
End Module

Programming Exercises
1. File Display

Assume that a file containing a series of integers is named numbers.dat and
exists on the computer’s disk. Design a program that displays all of the numbers
in the file.

File Display

VideoNote

2. Item Counter

Assume that a file containing a series of names (as strings) is named names.dat
and exists on the computer’s disk. Design a program that displays the number of
names that are stored in the file. (Hint: Open the file and read every string stored
in it. Each time you read a string, increment a counter variable. When you’ve read
all the strings from the file, the counter variable will contain the number of names
stored in the file.)

3. Sum of Numbers

Assume that a file containing a series of integers is named numbers.dat and exists
on the computer’s disk. Design a program that reads all of the numbers stored in
the file and calculates their total.

4. Average of Numbers

Assume that a file containing a series of integers is named numbers.dat and exists
on the computer’s disk. Design a program that calculates the average of all the
numbers stored in the file.

5. Largest Number

Assume that a file containing a series of integers is named numbers.dat and
exists on the computer’s disk. Design a program that determines the largest num-
ber stored in the file. (Hint: Use a technique similar to the one that was discussed
in Chapter 8 for finding the largest value in an array. You do not need to read
the file into an array to use this technique, however. It can be adapted for use
with a file.)

6. Golf Scores

The Springfork Amateur Golf Club has a tournament every weekend. The club
president has asked you to design two programs.

(1) A program that will read each player’s name and golf score as keyboard
input, and then save these as records in a file named golf.dat. (Each record
will have a field for the player’s name and a field for the player’s score.)

(2) A program that reads the records from the golf.dat file and displays them.

7. Best Golf Score

Modify program #2 that you wrote for Programming Exercise 6 so it also displays
the name of the player with the best (lowest) golf score. (Hint: Use a technique sim-
ilar to the one that was discussed in Chapter 8 for finding the lowest value in an ar-
ray. You do not need to read the file into an array to use this technique, however. It
can be adapted for use with a file.)

8. Sales Report

Brewster’s Used Cars, Inc. employs several salespeople. Brewster, the owner of the
company, has provided a file that contains sales records for each salesperson for
the past month. Each record in the file contains the following two fields:
● The salesperson’s ID number, as an integer
● The amount of a sale, as a real number

Programming Exercises 427

428 Chapter 10 Files

The records are already sorted by salesperson ID. Brewster wants you to design a
program that prints a sales report. The report should show each salesperson’s sales
and the total sales for that salesperson. The report should also show the total sales
for all salespeople for the month. Here is an example of how the sales report
should appear:
Brewster's Used Cars, Inc.
Sales Report

Salesperson ID Sale Amount
======================================
100 $10,000.00
100 $12,000.00
100 $5,000.00
Total sales for this salesperson: $27,000.00

101 $14,000.00
101 $18,000.00
101 $12,500.00
Total sales for this salesperson: $44,500.00

102 $13,500.00
102 $14,500.00
102 $20,000.00
Total sales for this salesperson: $48,000.00
Total of all sales: $119,500.00

TOPICS

11.1 Introduction to Menu-Driven Programs

11.2 Modularizing a Menu-Driven Program

11.3 Using a Loop to Repeat the Menu

11.4 Multiple-Level Menus

Menu-Driven Programs

11.1 Introduction to Menu-Driven Programs

CONCEPT: A menu is a list of operations that are displayed by a program. The user
can select one of the operations and the program will perform it.

A menu-driven program displays a list of operations that it can perform on the
screen, and allows the user to select the operation that he or she wants the program
to perform. The list of operations that is displayed on the screen is called a menu. For
example, a program that manages a mailing list might display the menu shown in
Figure 11-1.

C
H

A
P

T
E

R

11

429

 Mailing List Menu

1. Add a name to the list.
2. Delete a name from the list.
3. Change a name in the list.
4. Print the names in the list.

Enter your selection.

Figure 11-1 A menu

430 Chapter 11 Menu-Driven Programs

Notice that each item in this particular menu is preceded by a number. The user selects
one of the operations by entering the number that appears next to it. Entering 1, for
example, allows the user to add a name to the mailing list, and entering 4 causes the
program to print the mailing list. Menu-driven programs that ask the user to enter his
or her selection on the keyboard typically display a character such as a number or a
letter next to each menu item. The user types the character that corresponds to the
menu item that he or she wants to select.

NOTE: In a program that uses a graphical user interface (GUI), the user typically
makes menu selections by clicking them with the mouse. You will learn about graph-
ical user interfaces in Chapter 15.

Using a Decision Structure
to Perform Menu Selections
When the user selects an item from a menu, the program must use a decision structure
to perform an action based on that selection. In most languages the case structure is a
good mechanism for making this happen. Let’s look at a simple example. Suppose we
need a program that converts the following measurements from English units to metric
units:

● Convert inches to centimeters
● Convert feet to meters
● Convert miles to kilometers

Here are the formulas for making these conversions:

centimeters = inches × 2.54
meters = feet × 0.3048
kilometers = miles × 1.609

The program should display a menu, such as the following, that allows the user to se-
lect the conversion that he or she wants to perform.

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.

Program 11-1 shows the pseudocode for the program with four sample executions of
the program. The case structure in lines 21 through 48 performs the operation that the
user selects from the menu. Notice that a Default section appears in lines 45 through
47. The Default section validates the user’s menu selection. If the user enters any value
other than 1, 2, or 3 at the menu prompt, an error message is displayed. The first three
sample execution sessions show what happens when the user makes a valid selection
from the menu. The last sample session shows what happens when the user makes an
invalid menu selection. Figure 11-2 shows a flowchart for the program.

11.1 Introduction to Menu-Driven Programs 431

Program 11-1

1 // Declare a variable to hold the
2 // user's menu selection.
3 Declare Integer menuSelection
4
5 // Declare variables to hold the units
6 // of measurement.
7 Declare Real inches, centimeters, feet, meters,
8 miles, kilometers
9
10 // Display the menu.
11 Display "1. Convert inches to centimeters."
12 Display "2. Convert feet to meters."
13 Display "3. Convert miles to kilometers."
14 Display
15
16 // Prompt the user for a selection
17 Display "Enter your selection."
18 Input menuSelection
19
20 // Perform the selected operation.
21 Select menuSelection
22 Case 1:
23 // Convert inches to centimeters.
24 Display "Enter the number of inches."
25 Input inches
26 Set centimeters = inches * 2.54
27 Display "That is equal to ", centimeters,
28 " centimeters."
29
30 Case 2:
31 // Convert feet to meters.
32 Display "Enter the number of feet."
33 Input feet
34 Set meters = feet * 0.3048
35 Display "That is equal to ", meters, " meters."
36
37 Case 3:
38 // Convert miles to kilometers.
39 Display "Enter the number of miles."
40 Input miles
41 Set kilometers = miles * 1.609
42 Display "That is equal to ", kilometers,
43 " kilometers."
44
45 Default:
46 // Display an error message.
47 Display "That is an invalid selection."
48 End Select

⎫
⎪
⎪
⎬
⎪
⎪
⎭

This displays the menu
and prompts the user to
enter a selection. The
user’s input is stored in the
menuSelection variable.

⎫
⎪
⎬
⎪
⎭

This executes if
the user enters 1.

⎫
⎪
⎬
⎪
⎭

This executes
if the user
enters 2.

⎫
⎪
⎬
⎪
⎭

This executes if
the user enters 3.

⎫
⎬
⎭

This executes if the
user enters anything
other than 1, 2, or 3.

432 Chapter 11 Menu-Driven Programs

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.
1 [Enter]
Enter the number of inches.
10 [Enter]
That is equal to 25.4 centimeters.

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.
2 [Enter]
Enter the number of feet.
10 [Enter]
That is equal to 3.048 meters.

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.
3 [Enter]
Enter the number of miles.
10 [Enter]
That is equal to 16.09 kilometers.

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.
4 [Enter]
That is an invalid selection.

Although a case structure is often the easiest and most straightforward decision struc-
ture to use in a menu-driven program, other approaches can be taken as an alternative.
For example, a series of nested If-Then-Else statements could be used as shown in
Program 11-2. Figure 11-3 shows a flowchart for this program.

11.1 Introduction to Menu-Driven Programs 433

menuSelection

End

Set centimeters = inches
* 2.54

Display "Enter the
number of inches."

Input inches

Display "That is equal
to ", centimeters,
" centimeters."

Set meters = feet *
0.3048

Display "Enter the
number of feet."

Input feet

Display "That is equal
to ", meters, " meters."

Set kilometers = miles *
1.609

Display "Enter the
number of miles."

Input miles

Display "That is equal
to ", kilometers, "

kilometers."

1 2 3 Default

Display "That is an
invalid selection."

Start
Declare Integer menuSelection

Declare Real inches, centimeters,
feet, meters, miles, kilometers

Display "1. Convert
inches to centimeters."

Display "2. Convert feet
to meters."

Display "3. Convert
miles to kilometers."

Display blank line

Input menuSelection

Figure 11-2 Flowchart for Program 11-1

434 Chapter 11 Menu-Driven Programs

Program 11-2

1 // Declare a variable to hold the
2 // user's menu selection.
3 Declare Integer menuSelection
4
5 // Declare variables to hold the units
6 // of measurement.
7 Declare Real inches, centimeters, feet, meters,
8 miles, kilometers
9
10 // Display the menu.
11 Display "1. Convert inches to centimeters."
12 Display "2. Convert feet to meters."
13 Display "3. Convert miles to kilometers."
14 Display
15
16 // Prompt the user for a selection
17 Display "Enter your selection."
18 Input menuSelection
19
20 // Perform the selected operation.
21 If menuSelection == 1 Then
22 // Convert inches to centimeters.
23 Display "Enter the number of inches."
24 Input inches
25 Set centimeters = inches * 2.54
26 Display "That is equal to ", centimeters,
27 " centimeters."
28 Else
29 If menuSelection == 2 Then
30 // Convert feet to meters.
31 Display "Enter the number of feet."
32 Input feet
33 Set meters = feet * 0.3048
34 Display "That is equal to ", meters, " meters."
35 Else
36 If menuSelection == 3 Then
37 // Convert miles to kilometers.
38 Display "Enter the number of miles."
39 Input miles
40 Set kilometers = miles * 1.609
41 Display "That is equal to ", kilometers,
42 " kilometers."
43 Else
44 // Display an error message.
45 Display "That is an invalid selection."
46 End If
47 End If
48 End If

⎫
⎪
⎪
⎬
⎪
⎪
⎭

This displays the menu
and prompts the user to
enter a selection. The
user’s input is stored in the
menuSelection variable.

⎫
⎪
⎬
⎪
⎭

This executes if
the user enters 1.

⎫
⎪
⎬
⎪
⎭

This executes
if the user
enters 2.

⎫
⎪
⎬
⎪
⎭

This executes if
the user enters 3.

⎫
⎬
⎭

Error message

(The output is the same as that for Program 11-1.)

11.1 Introduction to Menu-Driven Programs 435

menuSelection == 1

End

Set centimeters = inches
* 2.54

Display "Enter the
number of inches."

Input inches

Set meters = feet *
0.3048

Display "Enter the
number of feet."

Input feet

Display "That is equal
to ", meters, " meters."

Set kilometers = miles *
1.609

Display "Enter the
number of miles."

Input miles

Display "That is equal
to ", kilometers, "

kilometers."

Display "That is an
invalid selection."

menuSelection == 2

menuSelection == 3

TrueFalse

TrueFalse

False True

Start
Declare Integer menuSelection

Declare Real inches, centimeters,
feet, meters, miles, kilometers

Display "1. Convert
inches to centimeters."

Display "2. Convert feet
to meters."

Display "3. Convert
miles to kilometers."

Display blank line

Input menuSelection

Display "That is equal
to ", centimeters,
" centimeters."

Figure 11-3 Flowchart for Program 11-2

436 Chapter 11 Menu-Driven Programs

Validating the Menu Selection
Any program that allows the user to select an item from a menu should validate the
user’s selection. Program 11-1 validated the user’s menu selection with the Default
section in the case structure (in lines 45 through 47). Program 11-2 validated the menu
selection with the Else clause (in lines 43 through 45).

An alternative approach is to use an input validation loop immediately after the Input
statement that reads the user’s menu selection. If the menu selection is invalid, the loop
displays an error message and prompts the user to enter it again. The loop repeats as
long as the input is invalid.

The pseudocode in Program 11-3 shows how Program 11-1 can be modified to use an
input validation loop. The input validation loop appears in lines 20 through 25. Notice
that the case structure in this program does not have a Default section. The input val-
idation loop makes sure the menuSelection variable is set to a value in the range of 1
through 3 before the program enters the case structure. Figure 11-4 shows a flowchart
for the program.

Program 11-3

1 // Declare a variable to hold the
2 // user's menu selection.
3 Declare Integer menuSelection
4
5 // Declare variables to hold the units
6 // of measurement.
7 Declare Real inches, centimeters, feet, meters,
8 miles, kilometers
9
10 // Display the menu.
11 Display "1. Convert inches to centimeters."
12 Display "2. Convert feet to meters."
13 Display "3. Convert miles to kilometers."
14 Display
15
16 // Prompt the user for a selection
17 Display "Enter your selection."
18 Input menuSelection
19

NOTE: As a third alternative, the program could also be modified to use an If-
Then-Else If statement.

11.1 Introduction to Menu-Driven Programs 437

20 // Validate the menu selection.
21 While menuSelection < 1 OR menuSelection > 3
22 Display "That is an invalid selection. ",
23 "Enter 1, 2, or 3."
24 Input menuSelection
25 End While
26
27 // Perform the selected operation.
28 Select menuSelection
29 Case 1:
30 // Convert inches to centimeters.
31 Display "Enter the number of inches."
32 Input inches
33 Set centimeters = inches * 2.54
34 Display "That is equal to ", centimeters,
35 " centimeters."
36
37 Case 2:
38 // Convert feet to meters.
39 Display "Enter the number of feet."
40 Input feet
41 Set meters = feet * 0.3048
42 Display "That is equal to ", meters, " meters."
43
44 Case 3:
45 // Convert miles to kilometers.
46 Display "Enter the number of miles."
47 Input miles
48 Set kilometers = miles * 1.609
49 Display "That is equal to ", kilometers,
50 " kilometers."
51 End Select

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.

Enter your selection.
4 [Enter]
That is an invalid selection. Enter 1, 2, or 3.
1 [Enter]
Enter the number of inches.
10 [Enter]
That is equal to 25.4 centimeters.

438 Chapter 11 Menu-Driven Programs

Display "That is an
invalid selection. Enter

1, 2, or 3."

Start

menuSelection < 1
OR

menuSelection > 3

Input menuSelection

True

A

False

Declare Integer menuSelection
Declare Real inches, centimeters,
feet, meters, miles, kilometers

Display "1. Convert
inches to centimeters."

Display "2. Convert feet
to meters."

Display "3. Convert
miles to kilometers."

Display blank line

Input menuSelection

Figure 11-4 Flowchart for Program 11-3

11.1 Introduction to Menu-Driven Programs 439

menuSelection

End

Set centimeters = inches
* 2.54

Display "Enter the
number of inches."

Input inches

Display "That is equal
to ", centimeters,
" centimeters."

Set meters = feet *
0.3048

Display "Enter the
number of feet."

Input feet

Display "That is equal
to ", meters, " meters."

Set kilometers = miles *
1.609

Display "Enter the
number of miles."

Input miles

Display "That is equal
to ", kilometers, "

kilometers."

1 2 3

A

Figure 11-4 Flowchart for Program 11-3 (continued)

Checkpoint

11.1 What is a menu-driven program?

11.2 The items displayed in a menu are often preceded by a number, letter, or other
character. What is the purpose of this character?

11.3 What type of structure do you use in a program to perform the action that the
user has selected from a menu?

440 Chapter 11 Menu-Driven Programs

11.2 Modularizing a Menu-Driven Program

CONCEPT: Most menu-driven programs should be modularized, with each task
written in its own module.

A menu-driven program is typically capable of performing several tasks, and allows the
user to select the task that he or she wants the program to perform. In most cases,
menu-driven programs should be broken down into modules that perform individual
tasks. For example, look at the pseudocode in Program 11-4. This is an improved ver-
sion of Program 11-3, using modules to break the program into small, manageable
pieces.

Here are summaries of the modules that are used in Program 11-4:

● main: The main module is the program’s starting point. It calls the other
modules.

● displayMenu: The displayMenu module displays the menu on the screen, gets
the user’s menu selection, and validates it.

● inchesToCentimeters: The inchesToCentimeters module prompts the user
to enter an amount of inches and displays that amount converted to centimeters.
This module is called from the main module (in line 13) when the user enters 1 at
the menu prompt.

● feetToMeters: The feetToMeters module prompts the user to enter an
amount of feet and displays that amount converted to meters. This module is
called from the main module (in line 16) when the user enters 2 at the menu
prompt.

● milesToKilometers: The milesToKilometers module prompts the user to en-
ter an amount of miles and displays that amount converted to meters. This mod-
ule is called from the main module (in line 19) when the user enters 3 at the menu
prompt.

Figure 11-5 shows a flowchart for the main module. Compare this to the flowchart for
Program 11-3 (shown in Figure 11-4), and you can see how the modules have simpli-
fied the design. Figure 11-6 shows the flowcharts for the other modules.

Program 11-4

1 Module main()
2 // Declare a variable to hold the
3 // user's menu selection.
4 Declare Integer menuSelection
5
6 // Display the menu and get the
7 // user's selection.
8 Call displayMenu(menuSelection)
9

11.2 Modularizing a Menu-Driven Program 441

10 // Perform the selected operation.
11 Select menuSelection
12 Case 1:
13 Call inchesToCentimeters()
14
15 Case 2:
16 Call feetToMeters()
17
18 Case 3:
19 Call milesToKilometers()
20 End Select
21 End Module
22
23 // The displayMenu module displays the menu and
24 // prompts the user for a selection. The selected
25 // value is validated and stored in the selection
26 // parameter, which is passed by reference.
27 Module displayMenu(Integer Ref selection)
28 // Display the menu.
29 Display "1. Convert inches to centimeters."
30 Display "2. Convert feet to meters."
31 Display "3. Convert miles to kilometers."
32 Display
33
34 // Prompt the user for a selection.
35 Display "Enter your selection."
36 Input selection
37
38 // Validate the menu selection.
39 While selection < 1 OR selection > 3
40 Display "That is an invalid selection. ",
41 "Enter 1, 2, or 3."
42 Input selection
43 End While
44 End Module
45
46 // The inchesToCentimeters module converts a
47 // measurement from inches to centimeters.
48 Module inchesToCentimeters()
49 // Local variables
50 Declare Real inches, centimeters
51
52 // Get the number of inches.
53 Display "Enter the number of inches."
54 Input inches
55
56 // Convert the inches to centimeters.
57 Set centimeters = inches * 2.54
58
59 // Display the result.
60 Display "That is equal to ", centimeters,
61 " centimeters."
62 End Module

442 Chapter 11 Menu-Driven Programs

63
64 // The feetToMeters module converts a
65 // measurement from feet to meters.
66 Module feetToMeters()
67 // Local variables
68 Declare Real feet, meters
69
70 // Get the number of feet.
71 Display "Enter the number of feet."
72 Input feet
73
74 // Convert the feet to meters.
75 Set meters = feet * 0.3048
76
77 // Display the result.
78 Display "That is equal to ", meters, " meters."
79 End Module
80
81 // The milesToKilometers module converts a
82 // measurement from miles to kilometers.
83 Module milesToKilometers()
84 // Local variables
85 Declare Real miles, kilometers
86
87 // Get the number of miles.
88 Display "Enter the number of miles."
89 Input miles
90
91 // Convert the miles to kilometers.
92 Set kilometers = miles * 1.609
93
94 // Display the result.
95 Display "That is equal to ", kilometers,
96 " kilometers."
97 End Module

(The output is the same as that for Program 11-3.)

11.2 Modularizing a Menu-Driven Program 443

menuSelection

End

main()

Declare Integer menuSelection

displayMenu
(menuSelection)

inchesTo
Centimeters()

feetToMeters() milesToKilometers()

1 2 3

Figure 11-5 Flowchart for the main module in Program 11-4

444 Chapter 11 Menu-Driven Programs

Return

Display "That is an
invalid selection. Enter

1, 2, or 3."

selection < 1
OR

selection > 3

Input selection

True

False

displayMenu
(Integer Ref selection)

Display "1. Convert
inches to centimeters."

Display "2. Convert feet
to meters."

Display "3. Convert
miles to kilometers."

Display blank line

Input selection

Figure 11-6 Flowcharts for the other modules in Program 11-4

11.3 Using a Loop to Repeat the Menu 445

Set centimeters = inches
* 2.54

Display "Enter the
number of inches."

Input inches

Display "That is equal
to ", centimeters,
" centimeters."

inchesTo
Centimeters()

Return

Declare Real inches,
centimeters

Set meters = feet *
0.3048

Display "Enter the
number of feet."

Input feet

Display "That is equal
to ", meters, " meters."

feetToMeters()

Return

Declare Real feet,
meters

Set kilometers = miles *
1.609

Display "Enter the
number of miles."

Input miles

Display "That is equal
to ", kilometers, "

kilometers."

milesToKilometers()

Return

Declare Real miles,
kilometers

Figure 11-6 Flowcharts for the other modules in Program 11-4 (continued)

11.3 Using a Loop to Repeat the Menu

CONCEPT: Most menu-driven programs use a loop to repeatedly display the menu
after a selected task is performed.

The programs you’ve seen so far in this chapter end immediately after performing an
operation that is selected from the menu. If the user wants to select another operation
from the menu, he or she has to run the program again. Having to run a program re-
peatedly to perform multiple operations can be inconvenient for the user, so most
menu-driven programs use a loop that redisplays the menu after the user’s selected ac-
tion has been performed. When the user is ready to end the program, he or she selects
an operation such as “End the program” from the menu.

446 Chapter 11 Menu-Driven Programs

Program 11-5 is a modification of Program 11-4. It shows how we can use a Do-While
loop in the main module to display the menu repeatedly until the user is ready to end
the program. Selecting item 4, End the program, causes the loop to stop and ends the
program. Figure 11-7 shows a flowchart for the main module.

Program 11-5

1 Module main()
2 // Declare a variable to hold the
3 // user's menu selection.
4 Declare Integer menuSelection
5
6 Do
7 // Display the menu and get the
8 // user's selection.
9 Call displayMenu(menuSelection)
10
11 // Perform the selected operation.
12 Select menuSelection
13 Case 1:
14 Call inchesToCentimeters()
15
16 Case 2:
17 Call feetToMeters()
18
19 Case 3:
20 Call milesToKilometers()
21 End Select
22 While menuSelection != 4
23 End Module
24
25 // The displayMenu module displays the menu and
26 // prompts the user for a selection. The selected
27 // value is stored in the selection parameter, which
28 // is passed by reference.
29 Module displayMenu(Integer Ref selection)
30 // Display the menu.
31 Display "1. Convert inches to centimeters."
32 Display "2. Convert feet to meters."
33 Display "3. Convert miles to kilometers."
34 Display "4. End the program."
35 Display
36
37 // Prompt the user for a selection.
38 Display "Enter your selection."
39 Input selection
40
41 // Validate the menu selection.
42 While selection < 1 OR selection > 4
43 Display "That is an invalid selection. ",
44 "Enter 1, 2, 3, or 4."
45 Input selection
46 End While
47 End Module

11.3 Using a Loop to Repeat the Menu 447

48
49 // The inchesToCentimeters module converts a
50 // measurement from inches to centimeters.
51 Module inchesToCentimeters()
52 // Local variables
53 Declare Real inches, centimeters
54
55 // Get the number of inches.
56 Display "Enter the number of inches."
57 Input inches
58
59 // Convert the inches to centimeters.
60 Set centimeters = inches * 2.54
61
62 // Display the result.
63 Display "That is equal to ", centimeters,
64 " centimeters."
65
66 // Display a blank line.
67 Display
68 End Module
69
70 // The feetToMeters module converts a
71 // measurement from feet to meters.
72 Module feetToMeters()
73 // Local variables
74 Declare Real feet, meters
75
76 // Get the number of feet.
77 Display "Enter the number of feet."
78 Input feet
79
80 // Convert the feet to meters.
81 Set meters = feet * 0.3048
82
83 // Display the result.
84 Display "That is equal to ", meters, " meters."
85
86 // Display a blank line.
87 Display
88 End Module
89
90 // The milesToKilometers module converts a
91 // measurement from miles to kilometers.
92 Module milesToKilometers()
93 // Local variables
94 Declare Real miles, kilometers
95
96 // Get the number of miles.
97 Display "Enter the number of miles."
98 Input miles
99
100 // Convert the miles to kilometers.
101 Set kilometers = miles * 1.609
102

448 Chapter 11 Menu-Driven Programs

103 // Display the result.
104 Display "That is equal to ", kilometers,
105 " kilometers."
106
107 // Display a blank line.
108 Display
109 End Module

Program Output (with Input Shown in Bold)

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.
4. End the program.

Enter your selection.
1 [Enter]
Enter the number of inches.
10 [Enter]
That is equal to 25.4 inches.

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.
4. End the program.

Enter your selection.
2 [Enter]
Enter the number of feet.
10 [Enter]
That is equal to 3.048 meters.

1. Convert inches to centimeters.
2. Convert feet to meters.
3. Convert miles to kilometers.
4. End the program.

Enter your selection.
4 [Enter]

T IP: A Do-While loop was chosen for Program 11-5 because it is a posttest loop,
and it will always display the menu at least one time. A While loop could be used,
but remember, the While loop is a pretest loop. Using it would require that the
menuSelection variable be initialized with some value other than 4.

11.3 Using a Loop to Repeat the Menu 449

menuSelection

End

main()

inchesTo
Centimeters()

feetToMeters() milesToKilometers()

1 2 3

menuSelection != 4

displayMenu
(menuSelection)

Declare Integer menuSelection

True

False

Figure 11-7 Flowchart for the main module in Program 11-5

450 Chapter 11 Menu-Driven Programs

In the Spotlight:
Designing a Menu-Driven Program
In several of Chapter 10’s In the Spotlight sections we stepped through the design of a
series of programs for Midnight Coffee Roasters, Inc. These programs are used to
manage the company’s inventory of coffee. Each type of coffee that is in the inven-
tory has a record in a file. Each record has fields indicating the name of the coffee
and the quantity in stock. The programs you saw in Chapter 10 allow the user to per-
form the following operations:

● Add a record to the inventory file
● Search for a record
● Modify the quantity in an existing record in the inventory file
● Delete a record in the inventory file
● Display all of the records in the inventory file

Currently, all of these operations are performed by separate programs. Julie, the
owner of Midnight Coffee Roasters, Inc., has asked you to consolidate all of these
operations into a single program with a menu.

You decide to design a program with the following modules:

● main: This module executes when the program starts. It uses a loop that calls the
appropriate modules to display the menu, get the user’s selection, and then per-
form the selected operation.

● displayMenu: This module displays the following menu:
Inventory Menu

1. Add a record.
2. Search for a record.
3. Modify a record.
4. Delete a record.
5. Display all records.
6. End the program.

The displayMenu module also gets the user’s selection, and validates the selection.
● addRecord: This module is called when the user selects item #1 from the menu. It

allows the user to add a record to the inventory file.
● searchRecord: This module is called when the user selects item #2 from the

menu. It allows the user to search the inventory file for a specific record.
● modifyRecord: This module is called when the user selects item #3 from the

menu. It allows the user to modify the quantity that is stored in an existing record
in the inventory file.

● deleteRecord: This module is called when the user selects item #4 from the
menu. It allows the user to delete a record from the inventory file.

● displayRecords: This module is called when the user selects item #5 from the
menu. It displays all of the records in the inventory file.

The pseudocode for the main module is shown in Program 11-6. Figure 11-8 shows a
flowchart for the main module.

11.3 Using a Loop to Repeat the Menu 451

Program 11-6 Coffee inventory program:
main module

1 Module main()
2 // Variable to hold the menu selection.
3 Declare Integer menuSelection
4
5 Do
6 // Display the menu.
7 Call displayMenu(menuSelection)
8
9 // Perform the selected operation.
10 Select menuSelection
11 Case 1:
12 Call addRecord()
13
14 Case 2:
15 Call searchRecord()
16
17 Case 3:
18 Call modifyRecord()
19
20 Case 4:
21 Call deleteRecord()
22
23 Case 5:
24 Call displayRecords()
25 End Select
26 While menuSelection != 6
27 End Module
28

The pseudocode for the displayMenu module follows. Figure 11-9 shows a flowchart
for the displayMenu module.

Program 11-6 Coffee inventory program (continued):
displayMenu module

29 // The displayMenu module displays the menu, gets
30 // the user's selection, and validates it.
31 Module displayMenu(Integer Ref selection)
32 // Display the menu.
33 Display " Inventory Menu"
34 Display "1. Add a record."
35 Display "2. Search for a record."
36 Display "3. Modify a record."
37 Display "4. Delete a record."
38 Display "5. Display all records."
39 Display "6. End the program."
40 Display
41

452 Chapter 11 Menu-Driven Programs

42 // Get the user's selection.
43 Display "Enter your selection."
44 Input selection
45
46 // Validate the selection.
47 While selection < 1 OR selection > 6
48 Display "That is an invalid selection."
49 Display "Enter 1, 2, 3, 4, 5, or 6."
50 Input selection
51 End While
52 End Module
53

menuSelection

End

main()

addRecord() searchRecord() modifyRecord()

menuSelection
!= 6

displayMenu
(menuSelection)

Declare Integer
menuSelection

True

False

deleteRecord() displayRecords()

1 3 4 52

Figure 11-8 Flowchart for the main module in Program 11-6

11.3 Using a Loop to Repeat the Menu 453

The pseudocode for the addRecord module follows. Figure 11-10 shows a flowchart
for the addRecord module.

displayMenu
(Integer Ref selection)

Return

selection < 1
OR

selection > 6

Input selection

True

False

Display
" Inventory Menu"

Display "1. Add a record."

Display "2. Search for a
record."

Display blank line

Input selection

Display "3. Modify a
record."

Display "4. Delete a
record."

Display "5. Display all
records."

 Display "6. End the
program."

Display "That is an
invalid selection."

Display "Enter 1, 2, 3, 4,
5, or 6."

Figure 11-9 Flowchart for the displayMenu module in Program 11-6

454 Chapter 11 Menu-Driven Programs

Program 11-6 Coffee inventory program (continued):
addRecord module

54 // The addRecord module lets the user add a record
55 // to the inventory file.
56 Module addRecord()
57 // Variables for the fields
58 Declare String description
59 Declare Real quantity
60
61 // Variable to control the loop
62 Declare String another = "Y"
63
64 // Declare an output file in append mode.
65 Declare OutputFile AppendMode coffeeFile
66
67 // Open the file.
68 Open coffeeFile "coffee.dat"
69
70 While toUpper(another) == "Y"
71 // Get the description.
72 Display "Enter the description."
73 Input description
74
75 // Get the quantity on hand.
76 Display "Enter the quantity on hand "
77 "(in pounds)."
78 Input quantity
79
80 // Append the record to the file.
81 Write coffeeFile description, quantity
82
83 // Determine whether the user wants to enter
84 // another record.
85 Display "Do you want to enter another record? ",
86 Display "(Enter Y for yes, or anything else for no.)"
87 Input another
88
89 // Display a blank line.
90 Display
91 End While
92
93 // Close the file.
94 Close coffeeFile
95 Display "Data appended to coffee.dat."
96 End Module
97

11.3 Using a Loop to Repeat the Menu 455

addRecord()

Display "Enter the
description."

Input description

Declare String description
Declare Real quantity

Declare String another = "Y"

toUpper(another)
== "Y"

Display "Enter the
quantity on hand (in

pounds)."

Input quantity

Write coffeeFile
description, quantity

Display "Do you want to
enter another record?"

Input another

Display a blank line

Declare OutputFile
AppendMode coffeeFile

Close coffeeFile

Display "Data appended
to coffee.dat."

Return

True

False

Open coffeeFile
"coffee.dat"

Display "(Enter Y for yes,
or anything else for no.)"

Figure 11-10 Flowchart for the addRecord module in Program 11-6

456 Chapter 11 Menu-Driven Programs

Program 11-6 Coffee inventory program (continued):
searchRecord module

98 // The searchRecord module allows the user to
99 // search for a record in the inventory file.
100 Module searchRecord()
101 // Variables for the fields
102 Declare String description
103 Declare Real quantity
104
105 // Variable to hold the search value
106 Declare String searchValue
107
108 // Flag to indicate whether the value was found
109 Declare Boolean found = False
110
111 // Declare an input file.
112 Declare InputFile coffeeFile
113
114 // Get the value to search for.
115 Display "Enter a value to search for."
116 Input searchValue
117
118 // Open the file.
119 Open coffeeFile "coffee.dat"
120
121 While NOT eof(coffeeFile)
122 // Read a record from the file.
123 Read coffeeFile description, quantity
124
125 // If the record contains the search value,
126 // then display it.
127 If contains(description, searchValue) Then
128 // Display the record.
129 Display "Description: ", description,
130 "Quantity: ", quantity, " pounds"
131
132 // Set the found flag to true.
133 Set found = True
134 End If
135 End While
136
137 // If the value was not found in the file,
138 // display a message indicating so.
139 If NOT found Then
140 Display searchValue, " was not found."
141 End If
142
143 // Close the file.
144 Close coffeeFile
145 End Module
146

The pseudocode for the searchRecord module follows. Figure 11-11 shows a flow-
chart for the searchRecord module.

11.3 Using a Loop to Repeat the Menu 457

The pseudocode for the modifyRecord module follows. Figure 11-12 and Figure 11-13
show a flowchart for the modifyRecord module.

Program 11-6 Coffee inventory program (continued):
modifyRecord module

147 // The modifyRecord module allows the user to modify
148 // an existing record in the inventory file.
149 Module modifyRecord()
150 // Variables for the fields
151 Declare String description
152 Declare Real quantity
153
154 // Variable to hold the search value
155 Declare String searchValue
156
157 // Variable to hold the new quantity
158 Declare Real newQuantity
159
160 // Flag to indicate whether the value was found

searchRecord()

Declare String description
Declare Real quantity

Declare String searchValue
Declare Boolean found = False

Input searchValue

Display "Enter a value
to search for."

Declare InputFile
coffeeFile

Open coffeeFile
"coffee.dat"

A

NOT
eof(coffeeFile)

Close coffeeFile

Return

True

False

A

Read coffeeFile
description, quantity

contains
(description,
searchValue)

True

False

NOT found
True

Display
searchValue,

" was not found."
False

Set found = True

Display "Description: ",
description, " Quantity: ",

quantity, " pounds"

Figure 11-11 Flowchart for the searchRecord module in Program 11-6

458 Chapter 11 Menu-Driven Programs

161 Declare Boolean found = False
162
163 // Declare an input file.
164 Declare InputFile coffeeFile
165
166 // Declare an output file to copy the original
167 // file to.
168 Declare OutputFile tempFile
169
170 // Open the files.
171 Open coffeeFile "coffee.dat"
172 Open tempFile "temp.dat"
173
174 // Get the value to search for.
175 Display "Enter the coffee you wish to update."
176 Input searchValue
177
178 // Get the new quantity.
179 Display "Enter the new quantity."
180 Input newQuantity
181
182 While NOT eof(coffeeFile)
183 // Read a record from the file.
184 Read coffeeFile description, quantity
185
186 // Write either this record to the temporary
187 // file, or the new record if this is the
188 // one that is to be changed.
189 If description == searchValue Then
190 Write tempFile description, newQuantity
191 Set found = True
192 Else
193 Write tempFile description, quantity
194 End If
195 End While
196
197 // Close the two files.
198 Close coffeeFile
199 Close tempFile
200
201 // Delete the original file.
202 Delete "coffee.dat"
203
204 // Rename the temporary file.
205 Rename "temp.dat", "coffee.dat"
206
207 // Indicate whether the operation was successful.
208 If found Then
209 Display "The record was updated."
210 Else
211 Display searchValue, " was not found in the file."
212 End If
213 End Module
214

11.3 Using a Loop to Repeat the Menu 459

Input searchValue

Display "Enter the coffee
you wish to update."

A

Input newQuantity

Display "Enter the new
quantity."

modifyRecord()

Declare String description
Declare Real quantity

Declare String searchValue
Declare Real newQuantity

Declare Boolean found = False

Declare InputFile coffeeFile

Declare OutputFile tempFile

Open coffeeFile "coffee.dat"

Open tempFile "temp.dat"

Figure 11-12 First part of the flowchart for the modifyRecord module in Program 11-6

460 Chapter 11 Menu-Driven Programs

The pseudocode for the deleteRecord module follows. Figure 11-14 shows a flow-
chart for the deleteRecord module.

NOT
eof(coffeeFile)

Close coffeeFile

Return

True

False

A

Read coffeeFile
description, quantity

description ==
searchValue

TrueFalse

found
True

Display "The record
was updated."

False

Write tempFile
description, newQuantity

Set found = True

Write tempFile
description, quantity

Close tempFile

Delete "coffee.dat"

Rename "temp.dat"
"coffee.dat"

Display searchValue,
" was not found in the file."

Figure 11-13 Second part of the flowchart for the modifyRecord module in Program 11-6

11.3 Using a Loop to Repeat the Menu 461

Program 11-6 Coffee inventory program (continued):
deleteRecord module

215 // The deleteRecord module allows the user to delete
216 // a record from the inventory file.
217 Module deleteRecord()
218 // Variables for the fields
219 Declare String description
220 Declare Real quantity
221
222 // Variable to hold the search value
223 Declare String searchValue
224
225 // Declare an input file.
226 Declare InputFile coffeeFile
227
228 // Declare an output file to copy the original
229 // file to.
230 Declare OutputFile tempFile
231
232 // Open the files.
233 Open coffeeFile "coffee.dat"
234 Open tempFile "temp.dat"
235
236 // Get the value to search for.
237 Display "Enter the coffee you wish to delete."
238 Input searchValue
239
240 While NOT eof(coffeeFile)
241 // Read a record from the file.
242 Read coffeeFile description, quantity
243
244 // If this is not the record to delete, then
245 // write it to the temporary file.
246 If description != searchValue Then
247 Write tempFile description, newQuantity
248 End If
249 End While
250
251 // Close the two files.
252 Close coffeeFile
253 Close tempFile
254
255 // Delete the original file.
256 Delete "coffee.dat"
257
258 // Rename the temporary file.
259 Rename "temp.dat", "coffee.dat"
260
261 Display "The file has been updated."
262 End Module
263

462 Chapter 11 Menu-Driven Programs

The pseudocode for the displayRecords module follows. Figure 11-15 shows a flow-
chart for the displayRecords module.

Program 11-6 Coffee inventory program (continued):
displayRecords module

264 // The displayRecords module displays all
265 // of the records in the inventory file.
266 Module displayRecords()

NOT eof(coffeeFile)

Close coffeeFile

Return

True

False

A

Read coffeeFile
description, quantity

description !=
searchValue

True

False

Write tempFile
description, newQuantity

Close tempFile

Delete "coffee.dat"

Rename "temp.dat"
"coffee.dat"

Display "The file has
been updated."

deleteRecord()

Declare String description
Declare Real quantity

Declare String searchValue

Display "Enter the coffee
you wish to delete."

A

Input searchValue

Declare InputFile coffeeFile

Declare OutputFile tempFile

Open coffeeFile "coffee.dat"

Open tempFile "temp.dat"

Figure 11-14 Flowchart for the deleteRecord module in Program 11-6

11.3 Using a Loop to Repeat the Menu 463

267 // Variables for the fields
268 Declare String description
269 Declare Real quantity
270
271 // Declare an input file.
272 Declare InputFile coffeeFile
273
274 // Open the file.
275 Open coffeeFile "coffee.dat"
276
277 While NOT eof(coffeeFile)
278 // Read a record from the file.
279 Read coffeeFile description, quantity
280
281 // Display the record.
282 Display "Description: ", description,
283 "Quantity: ", quantity, " pounds"
284 End While
285
286 // Close the file.
287 Close coffeeFile
288 End Module

NOT eof(coffeeFile)

Read coffeeFile
description, quantity

Display "Description: ",
description, " Quantity: ",

quantity, " pounds"

Close coffeeFile

Return

True

False

A

displayRecords()

Declare String description
Declare Real quantity

Declare InputFile
coffeeFile

Open coffeeFile
"coffee.dat"

A

Figure 11-15 Flowchart for the displayRecords module in Program 11-6

464 Chapter 11 Menu-Driven Programs

Checkpoint

11.4 Explain why most menu-driven programs use a loop to redisplay the menu
after the user’s selected action has been performed.

11.5 If a program uses a loop to display a menu repeatedly, how does the user
end the program?

11.4 Multiple-Level Menus

CONCEPT: A multiple-level menu has a main menu and one or more submenus.

The programs that you have seen in this chapter are simple enough that all of their
menu selections fit nicely in a single menu. When the user selects an operation from the
menu, the program immediately performs that operation and then the program redis-
plays the menu (or the program ends if it does not use a loop to redisplay the menu).
This type of menu system is called a single-level menu.

Often, programs are more complex and one menu isn’t sufficient. For example, sup-
pose you are designing a program that a business can use to perform the following
operations:

1. Process a sale
2. Process a return
3. Add a record to the inventory file
4. Search for a record in the inventory file
5. Modify a record in the inventory file
6. Delete a record in the inventory file
7. Print an inventory list report
8. Print a list of inventory items by cost
9. Print a list of inventory items by age

10. Print a list of inventory items by retail value

Because there are so many items in this list, you probably shouldn’t display them all in
one menu. Users often have trouble sorting through the items in a menu when given
too many choices.

A better approach is to use a multiple-level menu. A program that uses a multiple-level
menu typically displays a main menu when the program starts, showing only a few
items, and then displays smaller submenus when the user makes a selection. For exam-
ple, the main menu might appear as follows:

Main Menu
1. Process a Sale or a Return
2. Update the Inventory File
3. Print an Inventory Report
4. Exit the Program

11.4 Multiple-Level Menus 465

When the user selects item 1 from the main menu, the following submenu would
appear:

Sales and Returns Menu
1. Process a Sale
2. Process a Return
3. Go Back to the Main Menu

When the user selects item 2 from the main menu, the following submenu would
appear:

Update Inventory File Menu
1. Add a Record
2. Search for a Record
3. Modify a Record
4. Delete a Record
5. Go Back to the Main Menu

When the user selects item 3 from the main menu, the following submenu would
appear:

Inventory Report Menu
1. Print an inventory list report
2. Print a list of inventory items by cost
3. Print a list of inventory items by age
4. Print a list of inventory items by retail value
5. Go Back to the Main Menu

Let’s take a look at how the logic for this program might be designed. (We won’t look
at all of the modules in the program, but we will examine the ones involved in produc-
ing the menus and responding to the user’s menu selections.) Figure 11-16 shows how
the main module might be designed. First, a module named displayMainMenu is
called. The purpose of that module is to display the main menu and get the user’s selec-
tion. Next, the case structure calls the following modules:

● saleOrReturn if the user selected menu item 1
● updateInventory if the user selected menu item 2
● inventoryReport if the user selected menu item 3

If the user selects item 4, Exit the Program, the program ends.

Figure 11-17 shows the logic for the saleOrReturn module. First, a module named
displaySaleOrReturnMenu is called. The purpose of that module is to display the
Sales and Returns menu and get the user’s selection. The case structure calls the follow-
ing modules:

● processSale if the user selected menu item 1
● processReturn if the user selected menu item 2

If the user selects item 3, Go Back to the Main Menu, the program returns to the main
module and the main menu is displayed again.

466 Chapter 11 Menu-Driven Programs

menuSelection

main()

displayMainMenu
(menuSelection)

Declare Integer menuSelection

End

inventoryReport()

3

updateInventory
File()

2

menuSelection != 4
True

False

saleOrReturn()

1

Figure 11-16 Logic for the main module

11.4 Multiple-Level Menus 467

subMenuSelection

saleOrReturn()

displaySaleOr
ReturnMenu

(subMenuSelection)

Declare Integer
subMenuSelection

Return

processReturn()

2

subMenuSelection != 3
True

False

processSale()

1

Figure 11-17 Logic for the saleOrReturn module

468 Chapter 11 Menu-Driven Programs

Figure 11-18 shows the logic for the updateInventory module. First, a module
named displayUpdateInventoryMenu is called. The purpose of that module is to
display the Update Inventory File menu and get the user’s selection. The case struc-
ture calls the following modules:

● addRecord if the user selected menu item 1
● searchRecord if the user selected menu item 2
● modifyRecord if the user selected menu item 3
● deleteRecord if the user selected menu item 4

If the user selects item 5, Go Back to the Main Menu, the program returns to the
main module and the main menu is displayed again.

subMenuSelection

Return

updateInventory()

addRecord() searchRecord() modifyRecord()

subMenuSelection
 ! = 5

displayUpdate
InventoryMenu

(subMenuSelection)

Declare Integer
subMenuSelection

True

False

deleteRecord()

1 3 42

Figure 11-18 Logic for the updateInventory module

11.4 Multiple-Level Menus 469

Figure 11-19 shows the logic for the inventoryReport module. First, a module
named displayInventoryReportMenu is called. The purpose of that module is to
display the Inventory Report menu and get the user’s selection. The case structure
calls the following modules:

● printInventoryList if the user selected menu item 1
● printItemsByCost if the user selected menu item 2
● printItemsByAge if the user selected menu item 3
● printItemsByRetailValue if the user selected menu item 4

If the user selects item 5, Go Back to the Main Menu, the program returns to the main
module and the main menu is displayed again.

subMenuSelection

Return

inventoryReport()

printInventoryList() printItemsByCost() printItemsByAge()

subMenuSelection
! = 5

displayInventory
ReportMenu

(subMenuSelection)

Declare Integer
subMenuSelection

True

False

printItemsBy
RetailValue()

1 3 42

Figure 11-19 Logic for the inventoryReport module

Checkpoint

11.6 What is a single-level menu?

11.7 What is a multiple-level menu?

11.8 When a program has a lot of items for the user to select from, why should you
avoid displaying all of the items in one menu?

470 Chapter 11 Menu-Driven Programs

Review Questions

Multiple Choice

1. A menu is a __________.

a. case structure that selects an operation in a program
b. group of modules that perform individual tasks
c. list of operations displayed on the screen that the user may choose from
d. table of Boolean choices

2. When the user selects an item from a menu, the program must use a __________
structure to perform an action based on that selection.

a. repetition
b. sequence
c. menu selection
d. decision

3. If a menu-driven program uses a loop to redisplay the menu after a selected opera-
tion has been performed, the menu should probably have an item that the user can
select to __________.

a. end the program
b. perform the same operation again
c. undo the previous operation
d. reboot the computer

4. A program that uses a multiple-level menu displays __________ when it starts.

a. a warning to the user
b. the main menu
c. a submenu
d. the grand menu

5. When the user selects an item from a multiple-level menu, __________ might be
displayed next.

a. the main menu
b. a user information form
c. a submenu
d. a question asking the user whether he or she wants to continue

Review Questions 471

6. When the user selects an operation from a __________, the program immediately
performs that operation and then the program redisplays the menu (or the pro-
gram ends if it does not use a loop to redisplay the menu).

a. multiple-level menu
b. single-level menu
c. submenu
d. master menu

7. When the user selects an operation from a __________, the program might display
another menu.

a. multiple-level menu
b. single-level menu
c. submenu
d. interleaved menu

True or False

1. You cannot use nested If-Then-Else statements to perform the action selected by
the user from a menu.

2. It is not usually necessary to validate the user’s menu selection.

3. In most cases, a menu-driven program should be modularized.

4. If a menu-driven program does not use a loop to redisplay the menu after each
operation, the user will have to rerun the program to select another operation from
the menu.

5. In a single-level menu, the user might see a submenu appear when an item from the
main menu is selected.

Short Answer

1. What type of structure do you use in a program to perform the action that the user
has selected from a menu?

2. What ways for validating a user’s menu selection did we discuss in this chapter?

3. How can you design a menu-driven program so that the menu is redisplayed after
the selected operation has been performed?

4. What is the difference between a program that uses a single-level menu and a pro-
gram that uses a multiple-level menu?

5. When a program has a lot of items for the user to select from, why should you
avoid displaying all of the items on one menu?

472 Chapter 11 Menu-Driven Programs

Algorithm Workbench

1. Design an algorithm that displays the following menu, gets the user’s selection, and
validates the selection.

Main Menu
1. Open a new document.
2. Close the current document.
3. Print the current document.
4. Exit the program.
Enter your selection.

2. Design a case structure that can be used with the algorithm you designed for
question 1. The case structure should call a module named openDocument if the
user selected item 1, should call a module named closeDocument if the user
selected item 2, and should call a module named printDocument if the user
selected item 3.

3. Put the algorithms that you designed for questions 1 and 2 together inside a loop
that redisplays the menu after the user’s selected operation is performed, or exits if
the user selects item 4 from the menu.

4. Look for ways to modularize the algorithm that you designed for question 3 and
modify it accordingly.

Programming Exercises
1. Language Translator

Design a program that displays the following menu:
Select a Language and I will say Good Morning

1. English
2. Italian
3. Spanish
4. German
5. End the Program
Enter your selection.

If the user selects item 1, the program should display “Good morning.” If the user
selects item 2, the program should display “Buongiorno.” If the user selects item 3,
the program should display “Buenos dias.” If the user selects item 4, the program
should display “Guten morgen.” If the user selects item 5, the program should end.

2. University Meal Plan Selector

The university offers the following meal plans:

Plan 1: 7 meals per week for $560 per semester
Plan 2: 14 meals per week for $1,095 per semester
Plan 3: Unlimited meals for $1,500 per semester

Design a menu-driven program that allows the user to select a meal plan. The
program should ask the user for the number of semesters and then display the
total price for the plan.

The Language
Translator Problem

VideoNote

Programming Exercises 473

3. Geometry Calculator

Write a program that displays the following menu:
Geometry Calculator

1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit
Enter your choice (1-4).

If the user enters 1, the program should ask for the radius of the circle and then
display its area. Use the following formula to calculate the circle’s area:

area = �r2

Use 3.14159 for � and the radius of the circle for r.

If the user enters 2, the program should ask for the length and width of the rectan-
gle, and then display the rectangle’s area. Use the following formula to calculate
the rectangle’s area:

area = length � width

If the user enters 3, the program should ask for the length of the triangle’s base and
its height, and then display its area. Use the following formula to calculate the area
of the triangle:

area = base � height � .5

If the user enters 4, the program should end.

4. Astronomy Helper

Create an application that displays the following menu:
Select a Planet

1. Mercury
2. Venus
3. Earth
4. Mars
5. Exit the program
Enter your selection.

When the user selects a planet from the menu, the program should display data
about the planet’s average distance from the sun, the planet’s mass, and the planet’s
surface temperature. Use the following data in your program:

Mercury
Average distance from the sun 57.9 million kilometers
Mass 3.31 × 10^23 kg
Surface temperature –173 to 430 degrees Celsius

Venus
Average distance from the sun 108.2 million kilometers
Mass 4.87 × 10^24 kg
Surface temperature 472 degrees Celsius

Earth
Average distance from the sun 149.6 million kilometers
Mass 5.967 × 10^24 kg
Surface temperature –50 to 50 degrees Celsius

474 Chapter 11 Menu-Driven Programs

Mars
Average distance from the sun 227.9 million kilometers
Mass 0.6424 × 10^24 kg
Surface temperature –140 to 20 degrees Celsius

5. Golf Score Modification

In Programming Exercise 6 in Chapter 10 you designed the following two pro-
grams for the Springfork Amateur Golf Club:

1. A program that reads each player’s name and golf score as keyboard input,
and then saves these as records in a file named golf.dat.

2. A program that reads the records from the golf.dat file and displays them.

Consolidate these programs into a single program that presents a menu, allowing
the user to select the operation he or she wants to perform.

6. Phone Book Program

Design a program that you can use to keep all of your friends’ names and phone
numbers in a file. The program should be menu-driven, and offer the following
operations:
1. Add a new record
2. Search for a name.
3. Modify a phone number.
4. Delete a record.
5. Exit the program.

7. The Speed of Sound

The following table shows the approximate speed of sound in air, water, and
steel.

Medium Speed
Air 1,100 feet per second
Water 4,900 feet per second
Steel 16,400 feet per second

Design a program that displays a menu allowing the user to select air, water, or
steel. After the user has made a selection, he or she should be asked to enter the
number of seconds the sound will travel in the selected medium. The program
should then display the distance the sound will travel.

TOPICS

12.1 Introduction 12.2 Character-by-Character Text Processing

Text Processing

12.1 Introduction
Sometimes the data that a program must work with comes in the form of text. Word
processors, text messaging programs, email applications, Web browsers, and spell-
checkers are just a few examples of programs that work extensively with text.

The earlier chapters in this book have demonstrated some text processing techniques,
such as case-sensitive and case-insensitive string comparisons, sorting strings in an ar-
ray, and searching for substrings within a string. In addition, Chapter 6 introduced sev-
eral library functions that perform operations on strings. For your convenience, these
functions are summarized in Table 12-1.

The functions shown in Table 12-1 are very useful, but sometimes you need to operate
on strings at a more detailed level. Some operations require that you access or manipu-
late the individual characters in a string. For example, you’ve probably used programs
or Web sites that require you to set up a password that meets certain requirements.
Some systems require that passwords have a minimum length, contain at least one up-
percase letter, at least one lowercase letter, and at least one numeric digit. These re-
quirements are intended to prevent ordinary words from being used as passwords, and
thus make the passwords more secure. When a new password is created, the system has
to examine each of the password’s characters to determine whether it meets the re-
quirements. In the next section you will see an example of an algorithm that performs
this very operation. First, however, we will discuss the process of accessing and manip-
ulating the individual characters in a string.

C
H

A
P

T
E

R

12

475

476 Chapter 12 Text Processing

Table 12-1 Common String Functions

Function Description

length(string) Returns the number of characters in string.

For example, the expression length("Test") would return 4.

append(string1,
string2)

Returns a string that is created by appending string2 to the end
of string1.

For example, the expression append("Hello ", "World")
would return the string "Hello World".

toUpper(string) Returns a string that is an uppercase copy of string.

For example the expression toUpper("Test") would return the
string "TEST".

toLower(string) Returns a string that is a lowercase copy of string.

For example the expression toLower("TEST") would return the
string "test".

substring(string,
start, end)

Returns a substring of string. The substring is the set of charac-
ters starting at the position specified by start and ending at the
position specified by end. (The first character in string is at
position 0.)

For example, the expression substring("Kevin", 2, 4)
would return the string "vin".

contains(string1,
string2)

Returns True if string1 contains string2. Otherwise it returns
False.

For example the expression contains("smiley", "mile")
would return True, and the expression contains("Smiley",
"xyz") would return False.

stringToInteger
(string)

Converts string to an Integer and returns that value.

For example, the expression stringToInteger("77") would re-
turn the Integer value 77.

stringToReal(string) Converts string to a Real and returns that value.

For example, the expression stringToInteger("1.5") would
return the Real value 1.5.

isInteger(string) Returns True if string can be converted to an Integer, or
False otherwise.

For example, the expression isInteger("77") would return
True, and the expression isInteger("x4yz") would return
False.

isReal(string) Returns True if string can be converted to a Real, or False
otherwise.

For example, the expression isReal("3.2") would return True,
and the expression isReal("x4yz") would return False.

12.2 Character-by-Character Text Processing 477

12.2 Character-by-Character Text Processing

CONCEPT: Some tasks require that you access and/or manipulate the individual
characters that appear in a string.

Although each programming language has its own way of providing access to the indi-
vidual characters in a string, many languages allow you to use subscript notation. This
makes it possible to work with a string as if it were an array of characters. You use sub-
script 0 to access the first character, subscript 1 to access the second character, and so
on. The subscript of the last character would be one less than the string’s length. This
is the approach that we will use in our pseudocode, as demonstrated in Program 12-1.

Program 12-1

1 // Declare and initialize a string.
2 Declare String name = "Jacob"
3
4 // Use subscript notation to display the
5 // individual characters in the string.
6 Display name[0]
7 Display name[1]
8 Display name[2]
9 Display name[3]
10 Display name[4]

Program Output

J
a
c
o
b

In line 2 we declare name as a String variable, and initialize it with the string
"Jacob". The string has five characters, so we can use the subscripts 0 through 4 to ac-
cess those characters, as shown in lines 6 through 10. As with arrays, an error will oc-
cur at runtime if we attempt to use an invalid subscript with a string.

Program 12-2 shows how a loop can be used to step through the characters in a string.
Notice that in the For loop (in line 8) the index variable has a starting value of 0 and
an ending value of length(name) - 1.

Program 12-2

1 // Declare and initialize a string.
2 Declare String name = "Jacob"

478 Chapter 12 Text Processing

3
4 // Declare a variable to step through the string.
5 Declare Integer index
6
7 // Display the characters in the string.
8 For index = 0 To length(name) - 1
9 Display name[index]
10 End For

Program Output

J
a
c
o
b

Program 12-3 shows an example of changing individual characters in a string. The
program reads a string as input from the keyboard, and then changes each occurrence
of the letter “t” to the letter “d.”

Program 12-3

1 // Declare a string to hold input.
2 Declare String str
3
4 // Declare a variable to step through the string.
5 Declare Integer index
6
7 // Prompt the user to enter a sentence.
8 Display "Enter a sentence."
9 Input str
10
11 // Change each "t" to a "d".
12 For index = 0 To length(str) - 1
13 If str[index] == "t" Then
14 Set str[index] = "d"
15 End If
16 End For
17
18 // Display the modified string.
19 Display str

Program Output (with Input Shown in Bold)

Enter a sentence.
Look at that kitty cat! [Enter]
Look ad dhad kiddy cad!

12.2 Character-by-Character Text Processing 479

WARNING! An error will also occur if you use a subscript on an uninitialized
String variable. Because an uninitialized variable contains no data, you cannot ac-
cess or manipulate its contents.

The programs you have seen so far in this chapter demonstrate how you can access and
modify individual characters at specific locations in a string. In most programming lan-
guages, when you use a subscript or other mechanism to access an individual character
position within a string, that character position must already exist or an error will oc-
cur. For example, if a string contains four characters, we cannot use subscript notation
to append a fifth character to it. The following pseudocode illustrates this:

Declare String word = "mist" // This string has 4 characters.

Set word[4] = "y" // Error!

In the first statement the word variable is initialized with the string "mist", which has
four characters. The subscript of the last character is 3. The second statement attempts
to assign the character “y” to word[4], but an error will occur because that character
position does not exist. If you wish to append characters to a string, you must typically
use an operator or a library function that is designed for that purpose.

Table 12-2 Common Character Testing Functions

Function Description

isDigit(character) Returns True if character is a numeric digit, or False otherwise.

isLetter(character) Returns True if character is an alphabetic letter or False
otherwise.

isLower(character) Returns True if character is a lowercase letter or False
otherwise.

isUpper(character) Returns True if character is an uppercase letter or False
otherwise.

isWhiteSpace
(character)

Returns True if character is a whitespace character or False
otherwise. (A whitespace character is a space, a tab, or a
newline.)

Character Testing Library Functions
In addition to string library functions, such as the ones shown in Table 12-1, most pro-
gramming languages also provide library functions that are designed to work with sin-
gle characters. Table 12-2 shows examples of commonly supported functions that test
the value of a character. Note that each of the functions listed in the table returns a
Boolean value of True or False.

480 Chapter 12 Text Processing

Program 12-4 shows an example using one of these functions. The program reads a
string as input from the keyboard, and then counts the number of uppercase characters
in that string.

Program 12-4

1 // Declare a string to hold input.
2 Declare String str
3
4 // Declare a variable to step through the string.
5 Declare Integer index
6
7 // Declare an accumulator variable to keep count
8 // of the number of uppercase letters.
9 Declare Integer upperCaseCount = 0
10
11 // Prompt the user to enter a sentence.
12 Display "Enter a sentence."
13 Input str
14
15 // Count the number of uppercase letters.
16 For index = 0 To length(str) - 1
17 If isUpper(str[index]) Then
18 Set upperCaseCount = upperCaseCount + 1
19 End If
20 End For
21
22 // Display the number of uppercase characters.
23 Display "That string has ", upperCaseCount, " uppercase letters."

Program Output (with Input Shown in Bold)

Enter a sentence.
Ms. Jones will arrive TODAY! [Enter]
That string has 7 uppercase letters.

The For loop that appears in lines 16 through 20 steps through the String variable
str. The If-Then statement that begins in line 17 calls the isUpper function, passing
str[index] as an argument. If that character is uppercase, the function returns True
and the value of upperCaseCount is incremented in line 18. After the loop finishes,
upperCaseCount will contain the number of uppercase characters in str.

In the Spotlight:
Validating a Password
Many password-protected systems allow users to set up their own passwords. For in-
creased security, systems usually require that passwords meet minimum specifications.
When a user creates a password, the system must examine the password to determine
whether it meets the minimum specifications. If it does not, the system rejects the pass-
word and requires the user to create another, more secure, password.

12.2 Character-by-Character Text Processing 481

The pseudocode shown in Program 12-5 demonstrates how a password can be vali-
dated by a system that has the following requirements:

● Passwords must be at least 8 characters long.
● Passwords must contain at least one uppercase character.
● Passwords must contain at least one lowercase character.
● Passwords must contain at least one numeric digit.

The pseudocode is modularized with functions that perform much of the validation.
The main module gets a password from the user and then calls the following functions
to validate that password:

● The length library function is called to determine the password’s length.
● The numberUpperCase function is called with the password variable passed as

an argument. This function returns the number of uppercase letters in the string
argument.

● The numberLowerCase function is called with the password variable passed as
an argument. This function returns the number of lowercase letters in the string
argument.

● The numberDigits function is called with the password variable passed as
an argument. This function returns the number of numeric digits in the string
argument.

Rather than presenting the entire program at once, let’s first look at the main module
and then each function separately. Here is the main module:

Program 12-5 Password validation program:
main module

1 Module main()
2 // Constant for the minimum password length
3 Constant Integer MIN_LENGTH = 8
4
5 // Local variable to hold the user's password
6 Declare String password
7
8 // Display some information about the program.
9 Display "This program determines whether a password"
10 Display "meets the following requirements:"
11 Display "(1) It must be at least 8 characters long."
12 Display "(2) It must contain at least one uppercase letter."
13 Display "(3) It must contain at least one lowercase letter."
14 Display "(4) It must contain at least one numeric digit."
15 Display
16
17 // Get a password from the user.
18 Display "Enter a password."
19 Input password
20
21 // Validate the password.
22 If length(password) >= MIN_LENGTH AND
23 numberUpperCase(password) >= 1 AND
24 numberLowerCase(password) >= 1 AND
25 numberDigits(password) >= 1 Then

482 Chapter 12 Text Processing

26 Display "The password is valid"
27 Else
28 Display "The password does not meet the requirements."
29 End If
30 End Module
31

Line 3 declares a constant for the minimum password length and line 6 declares a
String variable named password to hold the user’s password. Lines 9 through 15 dis-
play information on the screen informing the user of the password requirements. Lines
18 and 19 prompt the user to enter a password, which is read from the keyboard and
assigned to the password variable.

The If-Then-Else statement that begins in line 22 evaluates a compound Boolean
expression. In plain English the statement should be interpreted like this:

If the password’s length is at least 8 and
the number of uppercase letters in the password is at least 1 and
the number of lowercase letters in the password is at least 1 and
the number of numeric digits in the password is at least 1, Then the password is valid.

Else
The password does not meet the requirements.

The numberUpperCase function is shown next:

Program 12-5 Password validation program (continued):
numberUpperCase function

32 // The numberUpperCase function accepts a string
33 // argument and returns the number of uppercase
34 // letters it contains.
35 Function Integer numberUpperCase(String str)
36 // Variable to hold the number of uppercase letters
37 Declare Integer count = 0
38
39 // Variable to use stepping through str
40 Declare Integer index
41
42 // Step through str counting the number
43 // of uppercase letters.
44 For index = 0 To length(str) - 1
45 If isUpper(str[index]) Then
46 Set count = count + 1
47 End If
48 End For
49
50 // Return the number of uppercase letters.
51 Return count
52 End Function
53

The function accepts a string as an argument, which is passed into the parameter vari-
able str. Line 37 declares an Integer variable named count, initialized with the value 0.

12.2 Character-by-Character Text Processing 483

This variable will be used as an accumulator to hold the number of uppercase letters
found in the parameter variable str. Line 40 declares another Integer variable,
index. The index variable is used in the loop that begins in line 44 to step through
the characters in the str parameter variable. The If-Then statement that begins in
line 45 calls the isUpper library function to determine whether the character at
str[index] is uppercase. If so, the count variable is incremented in line 46. After the
loop has finished, the count variable will contain the number of uppercase letters
found in the str parameter variable. The count variable’s value is returned from the
function in line 51.

The numberLowerCase function is shown next:

Program 12-5 Password validation program (continued):
numberLowerCase function

54 // The numberLowerCase function accepts a string
55 // argument and returns the number of lowercase
56 // letters it contains.
57 Function Integer numberLowerCase(String str)
58 // Variable to hold the number of lowercase letters
59 Declare Integer count = 0
60
61 // Variable to use stepping through str
62 Declare Integer index
63
64 // Step through str counting the number
65 // of lowercase letters.
66 For index = 0 To length(str) - 1
67 If isLower(str[index]) Then
68 Set count = count + 1
69 End If
70 End For
71
72 // Return the number of lowercase letters.
73 Return count
74 End Function
75

This function is nearly identical to the numberUpperCase function, except that line 67 calls
the isLower library function to determine whether the character at str[index] is lower-
case. When the function ends, the statement in line 73 returns the value of the count vari-
able, which contains the number of lowercase letters found in the str parameter variable.

The numberDigits function is shown next:

Program 12-5 Password validation program (continued):
numberDigits function

76 // The numberDigits function accepts a string
77 // argument and returns the number of numeric
78 // digits it contains.
79 Function Integer numberDigits(String str)

484 Chapter 12 Text Processing

80 // Variable to hold the number of digits
81 Declare Integer count = 0
82
83 // Variable to use stepping through str
84 Declare Integer index
85
86 // Step through str counting the number
87 // of digits.
88 For index = 0 To length(str) - 1
89 If isDigit(str[index]) Then
90 Set count = count + 1
91 End If
92 End For
93
94 // Return the number of digits.
95 Return count
96 End Function

This function is nearly identical to the numberUpperCase and numberLowerCase func-
tions, except that line 89 calls the isDigit library function to determine whether the
character at str[index] is a numeric digit. When the function ends, the statement in
line 95 returns the value of the count variable, which contains the number of numeric
digits found in the str parameter variable.

Program Output (with Input Shown in Bold)

This program determines whether a password
meets the following requirements:
(1) It must be at least 8 characters long.
(2) It must contain at least one uppercase letter.
(3) It must contain at least one lowercase letter.
(4) It must contain at least one numeric digit.

Enter a password.
love [Enter]
The password does not meet the requirements.

Program Output (with Input Shown in Bold)

This program determines whether a password
meets the following requirements:
(1) It must be at least 8 characters long.
(2) It must contain at least one uppercase letter.
(3) It must contain at least one lowercase letter.
(4) It must contain at least one numeric digit.

Enter a password.
loVe679g [Enter]
The password is valid.

12.2 Character-by-Character Text Processing 485

Inserting and Deleting Characters in a String
Most programming languages provide library functions or modules for inserting and
deleting characters in a string. In our pseudocode we will use the library modules de-
scribed in Table 12-3 for these purposes.

Table 12-3 String Insertion and Deletion Modules

Function Description

insert(string1, position,
string2)

string1 is a String, position is an
Integer, and string2 is a String. The
function inserts string2 into string1,
beginning at position.

delete(string, start, end) string is a String, start is an Integer, and
end is an Integer. The function deletes from
string all of the characters beginning at the posi-
tion specified by start, and ending at the position
specified by end. The character at the ending posi-
tion is included in the deletion.

Here is an example of how we might use the insert module:

Declare String str = "New City"
insert(str, 4, "York ")
Display str

The second statement inserts the string "York " into the str variable, beginning at
position 4. The characters that are currently in the str variable beginning at position 4
are moved to the right. In memory, the str variable is automatically expanded in size
to accommodate the inserted characters. If these statements were a complete program
and we ran it, we would see “New York City” displayed on the screen.

Here is an example of how we might use the delete module:

Declare String str = "I ate 1000 blueberries!"
delete(str, 8, 9)
Display str

The second statement deletes the characters at positions 8 through 9 in the str vari-
able. The characters that previously appeared beginning at position 10 are shifted left
to occupy the space left by the deleted characters. If these statements were a complete
program and we ran it, we would see “I ate 10 blueberries!” displayed on the screen.

486 Chapter 12 Text Processing

In the Spotlight:
Formatting and
Unformatting Telephone Numbers
Telephone numbers in the United States are commonly formatted to appear in the fol-
lowing manner:

(XXX)XXX-XXXX

In the format, X represents a digit. The three digits that appear inside the parentheses
are the area code. The three digits following the area code are the prefix, and the four
digits after the hyphen are the line number. Here is an example:

(919)555-1212

Although the parentheses and the hyphen make the number easier for people to read,
those characters are unnecessary for processing by a computer. In a computer system, a
telephone number is commonly stored as an unformatted series of digits, as shown
here:

9195551212

A program that works with telephone numbers usually needs to unformat numbers
that have been entered by the user. This means that the parentheses and the hyphen
must be removed prior to storing the number in a file or processing it in some other
way. In addition, such programs need the ability to format a number so it contains the
parentheses and the hyphen before displaying it on the screen or printing it on paper.

The pseudocode shown in Program 12-6 demonstrates an algorithm for unformatting
telephone numbers. The main module prompts the user to enter a formatted tele-
phone number. It then calls the isValidFormat function to determine whether the
telephone number is properly formatted. If it is, it then calls the unformat module to
remove the parentheses and the hyphen. The unformatted telephone number is then
displayed. Rather than presenting the entire program at once, let’s first look at the
main module:

Program 12-6 Phone number unformatting program:
main module

1 Module main()
2 // Declare a variable to hold a telephone number.
3 Declare String phoneNumber
4
5 // Prompt the user to enter a telephone number.
6 Display "Enter a telephone number. The number you"
7 Display "enter should be formatted as (XXX)XXX-XXXX."
8 Input phoneNumber
9
10 // If the input is properly formatted, unformat it.
11 If isValidFormat(phoneNumber) Then
12 unformat(phoneNumber)
13 Display "The unformatted number is ", phoneNumber
14 Else

12.2 Character-by-Character Text Processing 487

15 Display "That number is not properly formatted."
16 End If
17 End Module
18

Line 3 declares a String variable, phoneNumber, to hold the telephone number that
the user will enter. Lines 6 through 8 prompt the user to enter a properly formatted
telephone number, read it from the keyboard, and store it in the phoneNumber variable.

The If-Then-Else statement that begins in line 11 passes phoneNumber as an argu-
ment to the isValidFormat function. This function returns True if the argument is
properly formatted, or False otherwise. If the function returns True, line 12 passes
phoneNumber as an argument to the unformat function. The unformat function re-
ceives its argument by reference, and removes the parentheses and hyphen. Line 13
then displays the unformatted telephone number.

If the telephone number that was entered by the user was not properly formatted, the
isValidFormat function returns False in line 11 and the Display statement in line
15 executes.

The isValidFormat function is shown next:

Program 12-6 Phone number unformatting program (continued):
isValidFormat function

19 // The isValidFormat function accepts a string argument
20 // and determines whether it is properly formatted as
21 // a US telephone number in the following manner:
22 // (XXX)XXX-XXXX
23 // If the argument is properly formatted, the function
24 // returns True, otherwise False.
25 Function Boolean isValidFormat(str)
26 // Local variable to indicate valid format
27 Declare Boolean valid
28
29 // Determine whether str is properly formatted.
30 If length(str) == 13 AND str[0] == "(" AND
31 str[4] == ")" AND str[8] == "-" Then
32 Set valid = True
33 Else
34 Set valid = False
35 End If
36
37 // Return the value of valid.
38 Return valid
39 End Function
40

The function accepts a string as an argument, which is passed into the parameter
variable str. Line 27 declares a local Boolean variable named valid, which will
serve as a flag to indicate whether the string in str is properly formatted as a US
telephone number.

488 Chapter 12 Text Processing

The If-Then-Else statement that begins in line 30 evaluates a compound Boolean
expression. In plain English the statement should be interpreted like this:

If the string’s length is 13 and the character at position 0 is “(” and
the character at position 4 is “)” and the character at position 8 is “-” Then
Set valid to True.

Else
Set valid to False.

After the If-Then-Else statement executes, the valid variable will be set to either
True or False indicating whether str is properly formatted. The statement in line 38
returns the value of the valid variable.

The unformat module is shown next:

Program 12-6 Phone number unformatting program (continued):
unformat module

41 // The unformat module accepts a string, by reference,
42 // assumed to contain a telephone number formatted in
43 // this manner: (XXX)XXX-XXXX.
44 // The module unformats the string by removing the
45 // parentheses and the hyphen.
46 Module unformat(String Ref str)
47 // First, delete the left paren at position 0.
48 delete(str, 0, 0)
49
50 // Next, delete the right paren. Because of the
51 // previous deletion it is now located at
52 // position 3.
53 delete(str, 3, 3)
54
55 // Next, delete the hyphen. Because of the
56 // previous deletions it is now located at
57 // position 6.
58 delete(str, 6, 6)
59 End Module

The module accepts a string argument by reference, passed into the parameter variable
str. The module assumes that the string is properly formatted as (XXX)XXX-XXXX.
Line 48 deletes the character at position 0, which is the “(” character. All of the re-
maining characters are automatically shifted left by one position to occupy the space
left by the deleted character. Next, line 53 deletes the character at position 3, which is
the “)” character. The characters that previously appeared beginning at position 4 are
automatically shifted left to occupy the space left by the deleted character. Next, line 58
deletes the character at position 6, which is the hyphen. The characters previously ap-
pearing to the right of the hyphen are automatically moved left by one position. After
this statement executes, the string in str will be unformatted, appearing simply as a
string of digits.

12.2 Character-by-Character Text Processing 489

Program Output (with Input Shown in Bold)

Enter a telephone number. The number you
enter should be formatted as (XXX)XXX-XXXX.
(919)555-1212 [Enter]
The unformatted number is 9195551212

Now let’s look at an algorithm that takes an unformatted telephone number, which is a
series of 10 digits, and formats it by inserting the parentheses and hyphen at the correct
locations. The main module is shown here:

Program 12-7 Phone number formatting program:
main module

1 Module main()
2 // Declare a variable to hold a telephone number.
3 Declare String phoneNumber
4
5 // Prompt the user to enter a telephone number.
6 Display "Enter an unformatted 10 digit telephone number."
7 Input phoneNumber
8
9 // If the input is 10 characters long, format it.
10 If length(phoneNumber) == 10 Then
11 format(phoneNumber)
12 Display "The formatted number is ", phoneNumber
13 Else
14 Display "That number is not 10 digits."
15 End If
16 End Module
17

Line 3 declares a String variable, phoneNumber, to hold the telephone number that
the user will enter. Line 6 prompts the user to enter an unformatted 10 digit telephone
number, and line 7 stores the user’s input in the phoneNumber variable. The If-Then
statement that begins in line 10 calls the length library function to determine whether
the user’s input is 10 characters long. If it is, the format function is called in line 11
with phoneNumber passed as an argument. The format function accepts its argument
by reference, and inserts the parentheses and the hyphen at the proper locations so it
appears in the form (XXX)XXX-XXXX. The formatted telephone number is then dis-
played in line 12. If the user’s input is not 10 characters long, an error message is dis-
played in line 14.

The format module is shown next:

Program 12-7 Phone number formatting program (continued):
format module

18 // The format module accepts a string, by reference,
19 // assumed to contain an unformatted 10 digit telephone
20 // number. The module formats the string in the following

21 // manner: (XXX)XXX-XXXX.
22 Module format(String Ref str)
23 // First, insert the left paren at position 0.
24 insert(str, 0, "(")
25
26 // Next, insert the right paren at position 4.
27 insert(str, 4, ")")
28
29 // Next, insert the hyphen at position 8.
30 insert(str, 8, "-")
31 End Module

The module accepts a string argument by reference, passed into the parameter variable
str. Line 24 calls the insert library module to insert the “(” character at position 0.
All of the characters in the string are automatically shifted right one space to accom-
modate the inserted character. Line 27 inserts the “)” character at position 4, shifting
the characters that previously appeared beginning at position 4 to the right one space.
Line 30 inserts the “-” character at position 8, shifting the characters that previously
appeared beginning at position 8 to the right one space. After this statement executes,
the string in str will be formatted as (XXX)XXX-XXXX.

Program Output (with Input Shown in Bold)

Enter an unformatted 10 digit telephone number.
9195551212 [Enter]
The formatted number is (919)555-1212

Checkpoint

12.1 Assume the following declaration appears in a program:

Declare String name = "Joy"

What would the following statement display?

Display name[2]

12.2 Assume the following declaration appears in a program:

Declare String str = "Tiger"

Write a statement that changes the str variable’s first character to “L”.

12.3 Design an algorithm that determines whether the first character in the String
variable str is a numeric digit, and if it is, deletes that character.

12.4 Design an algorithm that determines whether the first character in the String
variable str is uppercase, and if it is, changes that character to “0”.

12.5 Assume the following declaration appears in a program:

Declare String str = "World"

490 Chapter 12 Text Processing

Review Questions 491

Write a statement that inserts the string "Hello " at the beginning of the str
variable. After the statement executes, the str variable should contain the
string "Hello World".

12.6 Assume the following declaration appears in a program:

Declare String city = "Boston"

Write a statement that deletes the first three characters in the str variable.

Review Questions

Multiple Choice

1. Which pseudocode statement displays the first character in the String variable
str?

a. Display str[1]
b. Display str[0]
c. Display str[first]
d. Display str

2. Which pseudocode statement displays the last character in the String variable
str?

a. Display str[-1]
b. Display str[length(str)]
c. Display str[last]
d. Display str[length(str) - 1]

3. If the str variable contains the string "berry", which pseudocode statement
changes its contents to "blackberry"?

a. Set str[0] = "black"
b. Set str = str + "black"
c. insert(str, 0, "black")
d. insert(str, 1, "black")

4. If the str variable contains the string "Redmond", which pseudocode statement
changes its contents to "Red"?

a. delete(str, 3, length(str))
b. delete(str, 3, 6)
c. Set str = str - "mond"
d. Set str[0] = "Red"

5. What will the following pseudocode result in?
Declare String name = "Sall"
Set name[4] = "y"
a. An error will occur.
b. The variable name will contain the string "Sally".
c. The variable name will contain the string "Saly".
d. The variable name will contain the string "Sall y".

True or False

1. When subscripts are used to specify character positions in a string, the first charac-
ter’s subscript is 0.

2. When subscripts are used to specify character positions in a string, the last charac-
ter’s subscript is the same as the string’s length.

3. If the String variable str contains the string "Might", then the statement Set
str[5] = "y" will change its contents to "Mighty".

4. The insert library module automatically expands the size of the string to accom-
modate the inserted characters.

5. The delete library module does not actually remove characters from a string, but
replaces them with spaces.

6. The isUpper library function converts a character to uppercase, and the isLower
library function converts a character to lowercase.

7. An error will occur if you use a subscript on an empty String variable.

Short Answer

1. When using subscript notation to specify a character position in a string, what are
the subscripts of the first and last characters?

2. If the following pseudocode were an actual program, what would it display?
Declare String greeting = "Happy"
insert(greeting, 0, "Birthday")
Display greeting

3. If the following pseudocode were an actual program, what would it display?
Declare String str = "Yada yada yada"
delete(str, 4, 9)
Display str

4. If the following pseudocode were an actual program, what would it display?
Declare String str = "AaBbCcDd"
Declare Integer index
For Index = 0 To length(str) - 1

If isLower(str[index]) Then
Set str[index] = "-"

End If
End For
Display str

5. If the following pseudocode were an actual program, what would it display?
Declare String str = "AaBbCcDd"
delete(str, 0, 0)
delete(str, 3, 3)
delete(str, 3, 3)
Display str

492 Chapter 12 Text Processing

Debugging Exercises 493

Algorithm Workbench

1. Design an algorithm that counts the number of digits that appear in the String
variable str.

2. Design an algorithm that counts the number of lowercase characters that appear in
the String variable str.

3. Design an algorithm that counts the number of uppercase characters that appear in
the String variable str.

4. Design an algorithm that deletes the first and last characters in the String variable
str.

5. Design an algorithm that converts each occurrence of the character “t” in the
String variable str to uppercase.

6. Design an algorithm that replaces each occurrence of the character “x” in the
String variable str with a space.

7. Assume the following declaration exists in a program:

Declare String str = "Mr. Bean"

Design an algorithm that replaces “Mr.” with “Mister” in the variable.

Debugging Exercises
1. What is wrong with the following pseudocode?

// This program assigns a character to the first element in

// a string.

Declare String letters

Set letters[0] = "A"

Display "The first letter of the alphabet is ", letters

2. What is wrong with the following pseudocode?
// This program determines whether the user’s input is a single

// digit.

Declare Integer digit

// Get the input from the user.

Display "Enter a single digit."

Input digit

// Determine if the input is a single digit.

If isDigit(digit[0]) AND length(digit) == 1 Then

Display digit, " is a single digit."

Else

Display digit, " is NOT a single digit."

End If

494 Chapter 12 Text Processing

3. Why doesn’t the following pseudocode perform as indicated in the comments?
// This program counts the characters in a string.

Declare String word

Declare Integer index

Declare Integer letters = 0

// Get the input from the user.

Display "Enter a word."

Input word

// Count the characters in the string.

For index = 0 To length(word)

Set count = count + 1

End For

Display "That word contains ", count, " characters."

Programming Exercises
1. Backward String

Design a program that prompts the user to enter a string and then displays the
string contents backward. For instance, if the user enters “gravity” the program
should display “ytivarg.”

2. Sentence Capitalizer

Design a program that prompts the user to enter a string containing multiple sen-
tences, and then displays the string with the first character of each sentence capital-
ized. For instance, if the user enters “hello. my name is Joe. what is your name?”
the program should display “Hello. My name is Joe. What is your name?” (Hint:
The toUpper library function can be used to convert a single character to upper-
case.)

3. Vowels and Consonants

Design a program that prompts the user to enter a string. The program should then
display the number of vowels and the number of consonants in the string.

4. Sum of Digits in a String

Design a program that asks the user to enter a string containing a series of single
digit numbers with nothing separating them. The program should display the sum
of all the single digit numbers in the string. For example, if the user enters 2514,
the method should return 12, which is the sum of 2, 5, 1, and 4. (Hint: The
stringToInteger library function can be used to convert a single character to an
integer.)

5. Most Frequent Character

Design a program that prompts the user to enter a string, and displays the character
that appears most frequently in the string.

The Backward
String Problem

VideoNote

Programming Exercises 495

6. Alphabetic Telephone Number Translator

Many companies use telephone numbers like 555-GET-FOOD so the number is
easier for their customers to remember. On a standard telephone, the alphabetic
letters are mapped to numbers in the following fashion:

A, B, and C = 2
D, E, and F = 3
G, H, and I = 4
J, K, and L = 5
M, N, and O = 6
P, Q, R, and S = 7
T, U, and V = 8
W, X, Y, and Z = 9

Design a program that asks the user to enter a 10-character telephone number in
the format XXX-XXX-XXXX. The program should display the telephone number
with any alphabetic characters that appeared in the original translated to their nu-
meric equivalent. For example, if the user enters 555-GET-FOOD the program
should display 555-438-3663.

7. Word Separator

Design a program that accepts as input a sentence in which all of the words are run
together, but the first character of each word is uppercase. Convert the sentence to
a string in which the words are separated by spaces and only the first word starts
with an uppercase letter. For example, the string “StopAndSmellTheRoses.” would
be converted to “Stop and smell the roses.” (Hint: The toLower library function
can be used to convert a single character to lowercase.)

8. Pig Latin

Design a program that reads a sentence as input and converts each word to “Pig
Latin.” In one version of Pig Latin you convert a word by removing the first letter,
placing that letter at the end of the word, and then appending “ay” to the word.
Here is an example:

English: I SLEPT MOST OF THE NIGHT
Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

9. Morse Code Converter

Design a program that asks the user to enter a string, and then converts that string
to Morse code. Morse code is a code where each letter of the English alphabet,
each digit, and various punctuation characters are represented by a series of dots
and dashes. Table 12-4 shows part of the code.

10. File Encryption

File encryption is the science of writing the contents of a file in a secret code. For
this assignment you will design a program that opens a file and encrypts its con-
tents. Assume the file that you are encrypting contains a list of strings.

The program should open the file and read its contents, one string at a time. As the
program reads a string from the file, it substitutes each character of the string for
an alternate character. It then writes the encoded string out to a second file. When
the program is finished, the second file will be a version of the first file, but written
in a secret code.

496 Chapter 12 Text Processing

11. File Decryption Filter

Design a program that decrypts the file produced by the program in Programming
Exercise 10. The decryption program should read the contents of the coded file,
restore the data to its original state, and write it to another file.

Table 12-4 Morse code

Character Code Character Code Character Code Character Code

space space 6 -.... G --. Q --.-

comma --..-- 7 --... H R .-.

period .-.-.- 8 ---.. I .. S ...

? ..--.. 9 ----. J .--- T -

0 ----- A .- K -.- U ..-

1 .---- B -... L .-.. V ...-

2 ..--- C -.-. M -- W .--

3 ...-- D -.. N -. X -..-

4- E . O --- Y -.--

5 F ..-. P .---. Z --..

13.1 Introduction to Recursion

13.2 Problem Solving with Recursion

13.3 Examples of Recursive Algorithms

Recursion

13.1 Introduction to Recursion

CONCEPT: A recursive module is a module that calls itself.

You have seen instances of modules calling other modules. In a program, the main
module might call module A, which then might call module B. It’s also possible for a
module to call itself. A module that calls itself is known as a recursive module. For
example, look at the message module shown in Program 13-1.

Program 13-1

1 Module main()
2 Call message()
3 End Module
4
5 Module message()
6 Display "This is a recursive module."
7 Call message()
8 End Module

Program Output

This is a recursive module.
This is a recursive module.
This is a recursive module.
This is a recursive module.
. . . and this output repeats infinitely!

C
H

A
P

T
E

R

13

497

TOPICS

498 Chapter 13 Recursion

The message module displays the string “This is a recursive module.” and then calls
itself. Each time it calls itself, the cycle is repeated. Can you see a problem with the
module? There’s no way to stop the recursive calls. This module is like an infinite loop
because there is no code to stop it from repeating.

Like a loop, a recursive module must have some way to control the number of times it
repeats. The pseudocode in Program 13-2 shows a modified version of the message
module. In this program, the message module receives an Integer argument that
specifies the number of times the module should display the message.

Program 13-2

1 Module main()
2 // By passing the argument 5 to the message module,
3 // we are telling it to display the message
4 // five times.
5 Call message(5)
6 End Module
7
8 Module message(Integer times)
9 If times > 0 Then
10 Display "This is a recursive module."
11 Call message(times - 1)
12 End If
13 End Module

Program Output

This is a recursive module.
This is a recursive module.
This is a recursive module.
This is a recursive module.
This is a recursive module.

The message module in this program contains an If-Then statement (in lines 9
through 12) that controls the repetition. As long as the times parameter is greater than
zero, the message “This is a recursive module.” is displayed, and then the module calls
itself again. Each time it calls itself, it passes times - 1 as the argument.

The main module calls the message module passing the argument 5. The first time the
module is called, the If-Then statement displays the message and then calls itself with
4 as the argument. Figure 13-1 illustrates this.

First call of the module

Value of times: 5

Second call of the module

Value of times: 4

Figure 13-1 First two calls of the module

13.1 Introduction to Recursion 499

The diagram shown in Figure 13-1 illustrates two separate calls of the message mod-
ule. Each time the module is called, a new instance of the times parameter is created in
memory. The first time the module is called, the times parameter is set to 5. When the
module calls itself, a new instance of the times parameter is created, and the value 4 is
passed into it. This cycle repeats until finally, zero is passed as an argument to the mod-
ule. This is illustrated in Figure 13-2.

First call of the module

Value of times: 5

Second call of the module

Value of times: 4

Third call of the module

Value of times: 3

Fourth call of the module

Value of times: 2

Fifth call of the module

Value of times: 1

Sixth call of the module

Value of times: 0

The module is first called
from the main module.

The second through sixth
calls are recursive.

Figure 13-2 Six calls to the message module

As you can see in the figure, the module is called six times. The first time it is called
from the main module, and the other five times it calls itself. The number of times that
a module calls itself is known as the depth of recursion. In this example, the depth of
recursion is five. When the module reaches its sixth call, the times parameter is set to 0.
At that point, the If-Then statement’s conditional expression is false, so the module re-
turns. Control of the program returns from the sixth instance of the module to the
point in the fifth instance directly after the recursive module call. This is illustrated in
Figure 13-3.

500 Chapter 13 Recursion

Recursive module call

Control returns here from the recursive call.
There are no more statements to execute
in this module, so the module returns.

Module message(Integer times)
 If times > 0 Then
 Display "This is a recursive module."
 Call message(times - 1)
 End If
End Module

Figure 13-3 Control returns to the point after the recursive module call

Because there are no more statements to be executed after the module call, the fifth in-
stance of the module returns control of the program back to the fourth instance. This
repeats until all instances of the module return.

13.2 Problem Solving with Recursion

CONCEPT: A problem can be solved with recursion if it can be broken down into
successive smaller problems that are identical to the overall problem.

The pseudocode shown in Program 13-2 demonstrates the mechanics of a recursive
module. Recursion can be a powerful tool for solving repetitive problems and is com-
monly studied in upper-level computer science courses. It may not yet be clear to you
how to use recursion to solve a problem.

First, note that recursion is never required to solve a problem. Any problem that can be
solved recursively can also be solved with a loop. In fact, recursive algorithms are usu-
ally less efficient than loops. This is because the process of calling a module requires
several actions to be performed by the computer. These actions include allocating
memory for parameters and local variables, and storing the address of the program
location where control returns after the module terminates. These actions, which are
sometimes referred to as overhead, take place with each module call. Such overhead is
not necessary with a loop.

Some repetitive problems, however, are more easily solved with recursion than with
a loop. Where a loop might result in faster execution time, the programmer might be
able to design a recursive algorithm faster. In general, a recursive module works as
follows:

● If the problem can be solved now, without recursion, then the module solves it
and returns

● If the problem cannot be solved now, then the module reduces it to a smaller but
similar problem and calls itself to solve the smaller problem

13.2 Problem Solving with Recursion 501

In order to apply this approach, first, we identify at least one case in which the prob-
lem can be solved without recursion. This is known as the base case. Second, we de-
termine a way to solve the problem in all other circumstances using recursion. This is
called the recursive case. In the recursive case, we must always reduce the problem to
a smaller version of the original problem. By reducing the problem with each recur-
sive call, the base case will eventually be reached and the recursion will stop.

Using Recursion to Calculate
the Factorial of a Number
The previous examples demonstrated recursive modules. Most programming languages
also allow you to create recursive functions. Let’s take an example from mathematics to
examine an application of recursive functions. In mathematics, the notation n! repre-
sents the factorial of the number n. The factorial of a nonnegative number can be de-
fined by the following rules:

If n = 0 then n! = 1
If n > 0 then n! = 1 × 2 × 3 × . . . × n

Let’s replace the notation n! with factorial(n), which looks a bit more like computer
code, and rewrite these rules as follows:

If n = 0 then factorial(n) = 1
If n > 0 then factorial(n) = 1 × 2 × 3 × . . . × n

These rules state that when n is 0, its factorial is 1. When n is greater than 0, its facto-
rial is the product of all the positive integers from 1 up to n. For instance, factorial(6)
is calculated as 1 × 2 × 3 × 4 × 5 × 6.

When designing a recursive algorithm to calculate the factorial of any number, first we
identify the base case, which is the part of the calculation that we can solve without re-
cursion. That is the case where n is equal to 0 as follows:

If n = 0 then factorial(n) = 1

This tells how to solve the problem when n is equal to 0, but what do we do when n is
greater than 0? That is the recursive case, or the part of the problem that we use recur-
sion to solve. This is how we express it:

If n > 0 then factorial(n) = n × factorial(n – 1)

This states that if n is greater than 0, the factorial of n is n times the factorial of
n – 1. Notice how the recursive call works on a reduced version of the problem, n – 1.
So, our recursive rule for calculating the factorial of a number might look like this:

If n = 0 then factorial(n) = 1
If n > 0 then factorial(n) = n × factorial(n – 1)

The pseudocode in Program 13-3 shows how we might design a factorial function in a
program.

502 Chapter 13 Recursion

Program 13-3

1 Module main()
2 // Local variable to hold a number
3 // entered by the user.
4 Declare Integer number
5
6 // Local variable to hold the
7 // factorial of the number
8 Declare Integer numFactorial
9
10 // Get a number from the user.
11 Display "Enter a nonnegative integer."
12 Input number
13
14 // Get the factorial of the number.
15 Set numFactorial = factorial(number)
16
17 // Display the factorial.
18 Display "The factorial of ", number,
19 " is ", numFactorial
20 End Module
21
22 // The factorial function uses recursion to
23 // calculate the factorial of its argument,
24 // which is assumed to be nonnegative.
25 Function Integer factorial(Integer n)
26 If n == 0 Then
27 Return 1
28 Else
29 Return n * factorial(n - 1)
30 End If
31 End Function

Program Output (with Input Shown in Bold)

Enter a nonnegative integer.
4 [Enter]
The factorial of 4 is 24

In the sample run of the program, the factorial function is called with the argument
4 passed into n. Because n is not equal to 0, the If statement’s Else clause executes the
following statement:

Return n * factorial(n - 1)

Although this is a Return statement, it does not immediately return. Before the return
value can be determined, the value of factorial(n - 1) must be determined. The
factorial function is called recursively until the fifth call, in which the n parameter
will be set to zero. Figure 13-4 illustrates the value of n and the return value during
each call of the function.

13.2 Problem Solving with Recursion 503

First call of the function

Value of n: 4

The function is first called
from the main function.

The second through fifth
calls are recursive.

Return value: 24

Second call of the function

Value of n: 3

Return value: 6

Third call of the function

Value of n: 2

Return value: 2

Fourth call of the function

Value of n: 1

Return value: 1

Fifth call of the function

Value of n: 0

Return value: 1

Figure 13-4 The value of n and the return value during each call of the function

The figure illustrates why a recursive algorithm must reduce the problem with each
recursive call. Eventually, the recursion has to stop in order for a solution to be
reached.

If each recursive call works on a smaller version of the problem, then the recursive calls
work toward the base case. The base case does not require recursion, so it stops the
chain of recursive calls.

Usually, a problem is reduced by making the value of one or more parameters smaller
with each recursive call. In our factorial function, the value of the parameter n gets
closer to 0 with each recursive call. When the parameter reaches 0, the function returns
a value without making another recursive call.

504 Chapter 13 Recursion

Direct and Indirect Recursion
The examples we have discussed so far show recursive modules or functions that directly
call themselves. This is known as direct recursion. There is also the possibility of creat-
ing indirect recursion in a program. This occurs when module A calls module B, which
in turn calls module A. There can even be several modules involved in the recursion.
For example, module A could call module B, which could call module C, which calls
module A.

Checkpoint

13.1 It is said that a recursive algorithm has more overhead than an iterative
algorithm. What does this mean?

13.2 What is a base case?

13.3 What is a recursive case?

13.4 What causes a recursive algorithm to stop calling itself?

13.5 What is direct recursion? What is indirect recursion?

13.3 Examples of Recursive Algorithms

Summing a Range of Array Elements
with Recursion
In this example, we look at a function named rangeSum that uses recursion to sum a
range of array elements. The function takes the following arguments: an Integer ar-
ray that contains the range of elements to be summed, an Integer specifying the start-
ing element of the range, and an Integer specifying the ending element of the range.
Here is an example of how the function might be used:

Constant Integer SIZE = 9
Declare Integer numbers[SIZE] = 1, 2, 3, 4, 5, 6, 7, 8, 9
Declare Integer sum;
Set sum = rangeSum(numbers, 3, 7)

The last statement in this pseudocode specifies that the rangeSum function should re-
turn the sum of elements 3 through 7 in the numbers array. The return value, which in
this case would be 30, is assigned to the sum variable. Here is the pseudocode definition
of the rangeSum function:

Function Integer rangeSum(Integer array[], Integer start,
Integer end)

If start > end Then
Return 0

Else
Return array[start] + rangeSum(array, start + 1, end)

End If
End Function

13.3 Examples of Recursive Algorithms 505

This function’s base case is when the start parameter is greater than the end parameter.
If this is true, the function returns the value 0. Otherwise, the function executes the fol-
lowing statement:

Return array[start] + rangeSum(array, start + 1, end)

This statement returns the sum of array[start] plus the return value of a recursive
call. Notice that in the recursive call, the starting element in the range is start + 1. In
essence, this statement says, “return the value of the first element in the range plus the
sum of the rest of the elements in the range.” The pseudocode in Program 13-4 demon-
strates the function.

Program 13-4

1 Module main()
2 // Declare a constant for the array size.
3 Constant Integer SIZE = 9
4
5 // Declare an Integer array.
6 Declare Integer numbers[SIZE] = 1, 2, 3, 4, 5, 6, 7, 8, 9
7
8 // Declare a variable to hold a sum.
9 Declare Integer sum
10
11 // Get the sum of elements 2 through 5.
12 Set sum = rangeSum(numbers, 2, 5)
13
14 // Display the sum.
15 Display "The sum of elements 2 through 5 is ", sum
16 End Module
17
18 // The rangeSum function returns the sum of a specified
19 // range of elements in array. The start parameter
20 // specifies the starting element. The end parameter
21 // specifies the ending element.
22 Function Integer rangeSum(Integer array[], Integer start,
23 Integer end)
24 If start > end Then
25 Return 0
26 Else
27 Return array[start] + rangeSum(array, start + 1, end)
28 End If
29 End Function

Program Output

The sum of elements 2 through 5 is 18

The Fibonacci Series
Some mathematical problems are solved recursively. One well-known example
is the calculation of Fibonacci numbers. The Fibonacci numbers, named after

506 Chapter 13 Recursion

the Italian mathematician Leonardo Fibonacci (born circa 1170), are the follow-
ing sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

Notice that after the second number, each number in the series is the sum of the two
previous numbers. The Fibonacci series can be defined as follows:

If n = 0 then Fib(n) = 0
If n = 1 then Fib(n) = 1
If n > = 2 then Fib(n) = Fib(n – 1) + Fib(n – 2)

A recursive function to calculate the nth number in the Fibonacci series is shown here:

Function Integer fib(Integer n)
If n == 0 then

Return 0
Else If n == 1 Then

Return 1
Else

Return fib(n - 1) + fib(n - 2)
End If

End Function

Notice that this function actually has two base cases: when n is equal to 0, and when n
is equal to 1. In either case, the function returns a value without making a recursive
call. The pseudocode in Program 13-5 demonstrates this function by displaying the
first 10 numbers in the Fibonacci series.

Program 13-5

1 Module main()
2 // Local variable to use as a counter.
3 Declare Integer counter
4
5 // Display an introductory message.
6 Display "The first 10 numbers in the ",
7 "Fibonacci series are:"
8
9 // Use a loop to call the fib function, passing
10 // the values 1 through 10 as an argument.
11 For counter = 1 To 10
12 Display fib(counter)
13 End For
14 End Module
15
16 // The fib function returns the nth number
17 // in the Fibonacci series.
18 Function Integer fib(Integer n)
19 If n == 0 then
20 Return 0
21 Else If n == 1 Then
22 Return 1
23 Else
24 Return fib(n - 1) + fib(n - 2)

13.3 Examples of Recursive Algorithms 507

25 End If
26 End Function

Program Output

The first 10 numbers in the Fibonacci series are:
0 1 1 2 3 5 8 13 21 34

Finding the Greatest Common Divisor
Our next example of recursion is the calculation of the greatest common divisor
(GCD) of two numbers. The GCD of two positive integers, x and y, is determined as
follows:

If x can be evenly divided by y, then gcd(x, y) = y
Otherwise, gcd(x, y) = gcd(y, remainder of x/y)

This definition states that the GCD of x and y is y if x/y has no remainder. This
is the base case. Otherwise, the answer is the GCD of y and the remainder of x/y. The
pseudocode in Program 13-6 shows a recursive method for calculating the GCD.

Program 13-6

1 Module main()
2 // Local variables to hold user input.
3 Declare Integer num1, num2
4
5 // Get a number from the user.
6 Display "Enter an integer."
7 Input num1
8
9 // Get another number from the user.
10 Display "Enter another integer."
11 Input num2
12
13 // Display the GCD.
14 Display "The greatest common divisor of these"
15 Display "two numbers is ", gcd(num1, num2)
16 End Module
17
18 // The gcd function returns the greatest common
19 // divisor of the arguments passed into x and y.
20 Function Integer gcd(Integer x, Integer y)
21 // Determine whether x can be divided evenly by y.
22 // If so, we’ve reached the base case.
23 If x MOD y == 0 Then
24 Return y
25 Else
26 // This is the recursive case.
27 Return gcd(x, x MOD y)
28 End If
29 End Function

508 Chapter 13 Recursion

Program Output

Enter an integer.
49 [Enter]
Enter another integer.
28 [Enter]
The greatest common divisor of these
two numbers is 7

A Recursive Binary Search Function
In Chapter 9, you learned about the binary search algorithm and saw an example that
uses a loop. The binary search algorithm can also be implemented recursively. For
example, the procedure can be expressed as follows:

If array[middle] equals the search value, then
the value is found.

Else if array[middle] is less than the search value, then
perform a binary search on the upper half of the array.

Else if array[middle] is greater than the search value, then
perform a binary search on the lower half of the array.

When you compare the recursive algorithm to its counterpart that uses a loop, it be-
comes evident that the recursive version is much more elegant and easier to under-
stand. The recursive binary search algorithm is also a good example of repeatedly
breaking a problem down into smaller pieces until it is solved. Here is the pseudocode
for a recursive binarySearch function:

Function Integer binarySearch(Integer array[],
Integer first, Integer last, Integer value)

// Local variable to hold the subscript of the element
// in the middle of the search area.
Declare Integer middle

// First, see if there are any elements to search.
If first > last Then

Return -1
End If

// Calculate the mid point of the search area.
Set middle = (first + last) / 2

// See if the value is found at the mid point . . .
If array[middle] == value Then

Return middle
End If

// Search either the upper or lower half.
If array[middle] < value Then

Return binarySearch(array, middle + 1, last, value)
Else

Return binarySearch(array, first, middle - 1, value)
End If

End Function

13.3 Examples of Recursive Algorithms 509

The first parameter, array, is the array to be searched. The next parameter, first, holds
the subscript of the first element in the search area (the portion of the array to be searched).
The next parameter, last, holds the subscript of the last element in the search area. The last
parameter, value, holds the value to be searched for. Like the binarySearch function
shown in Chapter 9, this function returns the subscript of the value if it is found, or –1 if the
value is not found. Program 13-7 demonstrates the function.

Program 13-7

1 Module main()
2 // Declare a constant for the array size.
3 Constant Integer SIZE = 20
4
5 // Declare an array of employee ID numbers.
6 Declare Integer numbers[SIZE] = 101, 142, 147, 189, 199,
7 207, 222, 234, 289, 296,
8 310, 319, 388, 394, 417,
9 429, 447, 521, 536, 600
10
11 // Declare a variable to hold an ID number.
12 Declare Integer empID
13
14 // Declare a variable to hold the search results.
15 Declare Integer results
16
17 // Get an employee ID number to search for.
18 Display "Enter an employee ID number."
19 Input empID
20
21 // Search for the ID number in the array.
22 result = binarySearch(numbers, 0, SIZE - 1, empID)
23
24 // Display the results of the search.
25 If result == -1 Then
26 Display "That employee ID number was not found."
27 Else
28 Display "That employee ID number was found ",
29 "at subscript ", result
30 End If
31
32 End Module
33
34 // The binarySearch function performs a recursive binary search
35 // on a range of elements in an Integer array. The parameter
36 // array holds the array to be searched. The parameter first
37 // holds the subscript of the range’s starting element, and the
38 // parameter last holds the subscript of the range’s last element.
39 // The parameter value holds the search value. If the search value
40 // is found, its array subscript is returned. Otherwise, -1 is
41 // returned indicating the value is not in the array.
42 Function Integer binarySearch(Integer array[],
43 Integer first, Integer last, Integer value)
44 // Local variable to hold the subscript of the element

510 Chapter 13 Recursion

45 // in the middle of the search area.
46 Declare Integer middle
47
48 // First, see if there are any elements to search.
49 If first > last Then
50 Return -1
51 End If
52
53 // Calculate the mid point of the search area.
54 Set middle = (first + last) / 2
55
56 // See if the value is found at the mid point . . .
57 If array[middle] == value Then
58 Return middle
59 End If
60
61 // Search either the upper or lower half.
62 If array[middle] < value Then
63 Return binarySearch(array, middle + 1, last, value)
64 Else
65 Return binarySearch(array, first, middle - 1, value)
66 End If
67 End Function

Program Output (with Input Shown in Bold)

Enter an employee ID number.
521 [Enter]
That the employee ID number was found at subscript 17

The Towers of Hanoi
The Towers of Hanoi is a mathematical game that is often used in computer science
textbooks to illustrate the power of recursion. The game uses three pegs and a set of
discs with holes through their centers. The discs are stacked on one of the pegs as
shown in Figure 13-5.

Figure 13-5 The pegs and discs in the Towers of Hanoi game

Notice that the discs are stacked on the leftmost peg, in order of size with the largest
disc at the bottom. The game is based on a legend where a group of monks in a temple
in Hanoi have a similar set of pegs with 64 discs. The job of the monks is to move the
discs from the first peg to the third peg. The middle peg can be used as a temporary
holder. Furthermore, the monks must follow these rules while moving the discs:

13.3 Examples of Recursive Algorithms 511

● Only one disk may be moved at a time
● A disk cannot be placed on top of a smaller disc
● All discs must be stored on a peg except while being moved

According to the legend, when the monks have moved all of the discs from the first peg
to the last peg, the world will come to an end.

To play the game, you must move all of the discs from the first peg to the third peg, fol-
lowing the same rules as the monks. Let’s look at some example solutions to this game,
for different numbers of discs. If you have only one disc, the solution to the game is
simple: move the disc from peg 1 to peg 3. If you have two discs, the solution requires
three moves:

● Move disc 1 to peg 2
● Move disc 2 to peg 3
● Move disc 1 to peg 3

Notice that this approach uses peg 2 as a temporary location. The complexity of the
moves continues to increase as the number of discs increases. To move three discs
requires the seven moves shown in Figure 13-6.

First move: Move disc 1 to peg 3.Original setup

Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2.

Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1.

Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3.

0 1

2 3

4 5

6 7

Figure 13-6 Steps for moving three discs

512 Chapter 13 Recursion

The following statement describes the overall solution to the problem:

Move n discs from peg 1 to peg 3 using peg 2 as a temporary peg.

The following summary describes a recursive algorithm that simulates the solution to
the game. Notice that in this algorithm we use the variables A, B, and C to hold peg
numbers.

To move n discs from peg A to peg C, using peg B as a temporary peg, do the
following:

If n > 0 then
Move n – 1 discs from peg A to peg B, using peg C as a temporary peg.
Move the remaining disc from peg A to peg C.
Move n – 1 discs from peg B to peg C, using peg A as a temporary peg.

End if

The base case for the algorithm is reached when there are no more discs to move.
The following pseudocode is for a module that implements this algorithm. Note that
the module does not actually move anything, but displays instructions indicating all of
the disc moves to make.

Module moveDiscs(Integer num, Integer fromPeg,
Integer toPeg, Integer tempPeg)

If num > 0 Then
moveDiscs(num - 1, fromPeg, tempPeg, toPeg)
Display "Move a disc from peg ", fromPeg,

" to peg ", toPeg
moveDiscs(num - 1, tempPeg, toPeg, fromPeg)

End If
End Module

This module accepts arguments into the following parameters:

num The number of discs to move.
fromPeg The peg to move the discs from.
toPeg The peg to move the discs to.
tempPeg The peg to use as a temporary peg.

If num is greater than 0, then there are discs to move. The first recursive call is as
follows:

moveDiscs(num - 1, fromPeg, tempPeg, toPeg)

This statement is an instruction to move all but one disc from fromPeg to tempPeg,
using toPeg as a temporary peg. The next statement is as follows:

Display "Move a disc from peg ", fromPeg,
" to peg ", toPeg

This simply displays a message indicating that a disc should be moved from fromPeg
to toPeg. Next, another recursive call is executed as follows:

moveDiscs(num - 1, tempPeg, toPeg, fromPeg)

This statement is an instruction to move all but one disc from tempPeg to toPeg, using
fromPeg as a temporary peg. The pseudocode in Program 13-8 demonstrates the module
by displaying a solution for the Tower of Hanoi game.

13.3 Examples of Recursive Algorithms 513

Program 13-8

1 Module main()
2 // A constant for the number of discs to move.
3 Constant Integer NUM_DISCS = 3
4
5 // A constant for the initial "from" peg.
6 Constant Integer FROM_PEG = 1
7
8 // A constant for the initial "to" peg.
9 Constant Integer TO_PEG = 3
10
11 // A constant for the initial "temp" peg.
12 Constant Integer TEMP_PEG = 2
13
14 // Play the game.
15 Call moveDiscs(NUM_DISCS, FROM_PEG, TO_PEG, TEMP_PEG)
16 Display "All the pegs are moved!"
17 End Module
18
19
20 // The moveDiscs function displays a disc move in
21 // the Towers of Hanoi game.
22 // The parameters are:
23 // num: The number of discs to move.
24 // fromPeg: The peg to move from.
25 // toPeg: The peg to move to.
26 // empPeg: The temporary peg.
27 Module moveDiscs(Integer num, Integer fromPeg,
28 Integer toPeg, Integer tempPeg)
29 If num > 0 Then
30 moveDiscs(num - 1, fromPeg, tempPeg, toPeg)
31 Display "Move a disc from peg ", fromPeg,
32 " to peg ", toPeg
33 moveDiscs(num - 1, tempPeg, toPeg, fromPeg)
34 End If
35 End Module

Program Output

Move a disc from peg 1 to peg 3
Move a disc from peg 1 to peg 2
Move a disc from peg 3 to peg 2
Move a disc from peg 1 to peg 3
Move a disc from peg 2 to peg 1
Move a disc from peg 2 to peg 3
Move a disc from peg 1 to peg 3
All the pegs are moved!

Recursion versus Looping
Any algorithm that can be coded with recursion can also be coded with a loop. Both
approaches achieve repetition, but which is best to use?

514 Chapter 13 Recursion

There are several reasons not to use recursion. Recursive algorithms are certainly less
efficient than iterative algorithms. Each time a module or function is called, the system
incurs overhead that is not necessary with a loop. Also, in many cases a solution using
a loop may be more evident than a recursive solution. In fact, the majority of repetitive
programming tasks are best done with loops.

Some problems, however, are more easily solved with recursion than with a loop. For
example, the mathematical definition of the GCD formula is well suited for a recursive
approach. The speed and amount of memory available to modern computers dimin-
ishes the performance impact of recursion so much that inefficiency is no longer a
strong argument against it. Today, the choice of recursion or a loop is primarily a de-
sign decision. If a problem is more easily solved with a loop, you should take that ap-
proach. If recursion results in a better design, you should make that choice.

Review Questions

Multiple Choice

1. A recursive module __________.

a. calls a different module
b. abnormally halts the program
c. calls itself
d. can be called only once

2. A module is called once from a program’s main module, and then it calls itself four
times. The depth of recursion is __________.

a. one
b. four
c. five
d. nine

3. The part of a problem that can be solved without recursion is the __________ case.

a. base
b. solvable
c. known
d. iterative

4. The part of a problem that is solved with recursion is the __________ case.

a. base
b. iterative
c. unknown
d. recursive

5. When a module explicitly calls itself it is called __________ recursion.

a. explicit
b. modal
c. direct
d. indirect

Review Questions 515

6. When module A calls module B, which calls module A, it is called __________
recursion.

a. implicit
b. modal
c. direct
d. indirect

7. Any problem that can be solved recursively can also be solved with a __________.

a. decision structure
b. loop
c. sequence structure
d. case structure

8. Actions taken by the computer when a module is called, such as allocating memory
for parameters and local variables, are referred to as _____________.

a. overhead
b. setup
c. cleanup
d. synchronization

9. A recursive algorithm must __________ in the recursive case.

a. solve the problem without recursion
b. reduce the problem to a smaller version of the original problem
c. acknowledge that an error has occurred and abort the program
d. enlarge the problem to a larger version of the original problem

10. A recursive algorithm must __________ in the base case.

a. solve the problem without recursion
b. reduce the problem to a smaller version of the original problem
c. acknowledge that an error has occurred and abort the program
d. enlarge the problem to a larger version of the original problem

True or False

1. An algorithm that uses a loop will usually run faster than an equivalent recursive
algorithm.

2. Some problems can be solved through recursion only.

3. It is not necessary to have a base case in all recursive algorithms.

4. In the base case, a recursive method calls itself with a smaller version of the origi-
nal problem.

Short Answer

1. In Program 13-2, presented earlier in this chapter, what is the base case of the message
module?

516 Chapter 13 Recursion

2. In this chapter, the rules given for calculating the factorial of a number are as
follows:

If n = 0 then factorial(n) = 1
If n > 0 then factorial(n) = n × factorial(n – 1)

If you were designing a module from these rules, what would the base case be?
What would the recursive case be?

3. Is recursion ever required to solve a problem? What other approach can you use to
solve a problem that is repetitive in nature?

4. When recursion is used to solve a problem, why must the recursive module call
itself to solve a smaller version of the original problem?

5. How is a problem usually reduced with a recursive module?

Algorithm Workbench

1. What will the following program display?
Module main()

Declare Integer num = 0
Call showMe(num)

End Module

Module showMe(Integer arg)
If arg < 10 Then

Call showMe(arg + 1)
Else

Display arg
End If

End Module

2. What will the following program display?
Module main()

Declare Integer num = 0
Call showMe(num)

End Module

Module showMe(Integer arg)
Display arg
If arg < 10 Then

Call showMe(arg + 1)
End If

End Module

3. The following module uses a loop. Rewrite it as a recursive module that performs
the same operation.
Module trafficSign(int n)

While n > 0
Display "No Parking"
Set n = n - 1

End While
End Module

Programming Exercises 517

Programming Exercises
1. Recursive Multiplication

Design a recursive function that accepts two arguments into the parameters x and
y. The function should return the value of x times y. Remember, multiplication can
be performed as repeated addition as follows:

7 × 4 = 4 + 4 + 4 + 4 + 4 + 4 + 4

(To keep the function simple, assume that x and y will always hold positive
nonzero integers.)

2. Largest Element

Design a function that accepts an array and the array’s size as arguments, and re-
turns the largest value in the array. The method should use recursion to find the
largest element.

3. Recursive Array Sum

Design a function that accepts an Integer array and the size of the array as argu-
ments. The function should recursively calculate the sum of all the numbers in the
array and return that value.

4. Sum of Numbers

Design a function that accepts an integer argument and returns the sum of all the
integers from 1 up to the number passed as an argument. For example, if 50 is
passed as an argument, the function will return the sum of 1, 2, 3, 4, . . . 50. Use
recursion to calculate the sum.

5. Recursive Power Method

Design a function that uses recursion to raise a number to a power. The function
should accept two arguments: the number to be raised and the exponent. Assume
that the exponent is a nonnegative integer.

6. Ackermann’s Function

Ackermann’s Function is a recursive mathematical algorithm that can be used to
test how well a computer performs recursion. Design a function ackermann(m, n),
which solves Ackermann’s Function. Use the following logic in your function:

If m = 0 then return n + 1
If n = 0 then return ackermann(m – 1, 1)
Otherwise, return ackermann(m – 1, ackermann(m, n – 1))

The Recursive
Multiplication
Problem

VideoNote

This page intentionally left blank

TOPICS

14.1 Procedural and Object-Oriented
Programming

14.2 Classes

14.3 Using the Unified Modeling Language
to Design Classes

14.4 Finding the Classes and Their
Responsibilities in a Problem

14.5 Inheritance

14.6 Polymorphism

Object-Oriented Programming

14.1 Procedural and Object-Oriented
Programming

CONCEPT: Procedural programming is a method of writing software. It is a pro-
gramming practice centered on the procedures or actions that take
place in a program. Object-oriented programming is centered on the
object. Objects are created from abstract data types that encapsulate
data and functions together.

There are primarily two methods of programming in use today: procedural and object-
oriented. The earliest programming languages were procedural, meaning a program
was made of one or more procedures. A procedure is simply a module or function that
performs a specific task such as gathering input from the user, performing calculations,
reading or writing files, displaying output, and so on. The programs that you have
written so far have been procedural in nature.

Typically, procedures operate on data items that are separate from the procedures. In a
procedural program, the data items are commonly passed from one procedure to an-
other. As you might imagine, the focus of procedural programming is on the creation of
procedures that operate on the program’s data. The separation of data and the code
that operates on the data can lead to problems, however, as the program becomes
larger and more complex.

C
H

A
P

T
E

R

14

519

520 Chapter 14 Object-Oriented Programming

For example, suppose you are part of a programming team that has written an exten-
sive customer database program. The program was initially designed so that a cus-
tomer’s name, address, and phone number were stored in three String variables. Your
job was to design several modules that accept those three variables as arguments and
perform operations on them. The software has been operating successfully for some
time, but your team has been asked to update it by adding several new features. During
the revision process, the senior programmer informs you that the customer’s name, ad-
dress, and phone number will no longer be stored in variables. Instead, they will be
stored in a String array. This means that you will have to modify all of the modules
that you have designed so that they accept and work with a String array instead of the
three variables. Making these extensive modifications not only is a great deal of work,
but also opens the opportunity for errors to appear in your code.

Whereas procedural programming is centered on creating procedures (which are mod-
ules and functions), object-oriented programming (OOP) is centered on creating ob-
jects. An object is a software entity that contains both data and procedures. The data
contained in an object is known as the object’s fields. An object’s fields are simply vari-
ables, arrays, or other data structures that are stored in the object. The procedures that
an object performs are known as methods. An object’s methods are nothing more than
modules or functions. The object is, conceptually, a self-contained unit that consists of
data (fields) and procedures (methods). This is illustrated in Figure 14-1.

Methods That
Operate on the Data

Data (Fields)

Object

Figure 14-1 An object contains data and procedures

OOP addresses the problem of code/data separation through encapsulation and data
hiding. Encapsulation refers to the combining of data and code into a single object.
Data hiding refers to an object’s ability to hide its data from code that is outside the ob-
ject. Only the object’s methods may then directly access and make changes to the ob-
ject’s data. An object typically hides its data, but allows outside code to access its
methods. As shown in Figure 14-2, the object’s methods provide programming state-
ments outside the object with indirect access to the object’s data.

14.1 Procedural and Object-Oriented Programming 521

Methods That
Operate on the Data

Data (Fields)

Object

Code
Outside the

Object

Figure 14-2 Code outside the object interacts with the object’s methods

When an object’s internal data is hidden from outside code and access to that data is
restricted to the object’s methods, the data is protected from accidental corruption. In
addition, the programming code outside the object does not need to know about the
format or internal structure of the object’s data. The code only needs to interact with
the object’s methods. When a programmer changes the structure of an object’s inter-
nal data, he or she also modifies the object’s methods so that they may properly oper-
ate on the data. The way in which outside code interacts with the methods, however,
does not change.

Object Reusability
In addition to solving the problems of code/data separation, the use of OOP has also
been encouraged by the trend of object reusability. An object is not a stand-alone pro-
gram, but is used by programs that need its service. For example, Sharon is a program-
mer who has developed an object for rendering 3D images. She is a math whiz and
knows a lot about computer graphics, so her object is coded to perform all of the nec-
essary 3D mathematical operations and handle the computer’s video hardware. Tom,
who is writing a program for an architectural firm, needs his application to display 3D
images of buildings. Because he is working under a tight deadline and does not possess
a great deal of knowledge about computer graphics, he can use Sharon’s object to per-
form the 3D rendering (for a small fee, of course!).

An Everyday Example of an Object
Think of your alarm clock as an object. It has the following fields:

● The current second (a value in the range of 0–59)
● The current minute (a value in the range of 0–59)
● The current hour (a value in the range of 1–12)
● The time the alarm is set for (a valid hour and minute)
● Whether the alarm is on or off (“on” or “off”)

522 Chapter 14 Object-Oriented Programming

As you can see, the fields are merely data values that define the state that the alarm
clock is currently in. You, the user of the alarm clock object, cannot directly manip-
ulate these fields because they are private. To change a field’s value, you must use
one of the object’s methods. The following are some of the alarm clock object’s
methods:

● Set time
● Set alarm time
● Turn alarm on
● Turn alarm off

Each method manipulates one or more of the fields. For example, the Set time
method allows you to set the alarm clock’s time. You activate the method by pressing a
button on top of the clock. By using another button, you can activate the Set alarm
time method.

In addition, another button allows you to execute the Turn alarm on and Turn
alarm off methods. Notice that all of these methods can be activated by you, who are
outside of the alarm clock. Methods that can be accessed by entities outside the object
are known as public methods.

The alarm clock also has private methods, which are part of the object’s private, inter-
nal workings. External entities (such as you, the user of the alarm clock) do not have
direct access to the alarm clock’s private methods. The object is designed to execute
these methods automatically and hide the details from you. The following are the
alarm clock object’s private methods:

● Increment the current second
● Increment the current minute
● Increment the current hour
● Sound alarm

Every second, the Increment the current second method executes. This changes
the value of the current second field. If the current second field is set to 59 when this
method executes, the method is programmed to reset the current second to 0, and then
cause the Increment the current minute method to execute. This method adds
1 to the current minute, unless it is set to 59. In that case, it resets the current minute
to 0 and causes the Increment the current hour method to execute. (Note that
the Increment the current minute method compares the new time to the alarm
time. If the two times match and the alarm is turned on, the Sound alarm method is
executed.)

Checkpoint

14.1 What is an object?

14.2 What is encapsulation?

14.3 Why is an object’s internal data usually hidden from outside code?

14.4 What are public methods? What are private methods?

14.2 Classes 523

14.2 Classes

CONCEPT: A class is code that specifies the fields and methods for a particular type
of object.

Now, let’s discuss how objects are created in software. Before an object can be created,
it must be designed by a programmer. The programmer determines the fields and meth-
ods that are necessary, and then creates a class. A class is code that specifies the fields
and methods of a particular type of object. Think of a class as a “blueprint” that ob-
jects may be created from. It serves a similar purpose as the blueprint for a house. The
blueprint itself is not a house, but is a detailed description of a house. When we use the
blueprint to build an actual house, we could say we are building an instance of the
house described by the blueprint. If we so desire, we can build several identical houses
from the same blueprint. Each house is a separate instance of the house described by
the blueprint. This idea is illustrated in Figure 14-3.

House Plan

Living Room

Bedroom

Blueprint that describes a house

Instances of the house described by the blueprint

Figure 14-3 A blueprint and houses built from the blueprint

Another way of thinking about the difference between a class and an object is to think
of the difference between a cookie cutter and a cookie. While a cookie cutter itself is
not a cookie, it describes a cookie. The cookie cutter can be used to make several cook-
ies, as shown in Figure 14-4. Think of a class as a cookie cutter and the objects created
from the class as cookies.

Classes and
Objects

VideoNote

524 Chapter 14 Object-Oriented Programming

Cookie cutter

Cookies

Figure 14-4 The cookie cutter metaphor

So, a class is not an object, but it can be a description of an object. When the pro-
gram is running, it can use the class to create, in memory, as many objects of a spe-
cific type as needed. Each object that is created from a class is called an instance of
the class.

For example, Jessica is an entomologist (someone who studies insects) and she also en-
joys writing computer programs. She designs a program to catalog different types of in-
sects. As part of the program, she creates a class named Insect, which specifies fields
and methods for holding and manipulating data common to all types of insects. The
Insect class is not an object, but a specification that objects may be created from.
Next, she writes programming statements that create a housefly object, which is an
instance of the Insect class. The housefly object is an entity that occupies computer
memory and stores data about a housefly. It has the fields and methods specified by the
Insect class. Then she writes programming statements that create a mosquito object.
The mosquito object is also an instance of the Insect class. It has its own area in
memory, and stores data about a mosquito. Although the housefly and mosquito ob-
jects are separate entities in the computer’s memory, they were both created from the
Insect class. This means that each of the objects has the fields and methods described
by the Insect class. This is illustrated in Figure 14-5.

Insect
class

housefly
object

mosquito
object

The Insect class describes
the fields and methods
that a particular type of
object may have.

The housefly object is an
instance of the Insect class. It
has the fields and methods
described by the Insect class.

The mosquito object is an
instance of the Insect class. It
has the fields and methods
described by the Insect class.

Figure 14-5 The housefly and mosquito objects are instances of the Insect class

14.2 Classes 525

Creating a Class, Step by Step
The general format that we will use to write a class definition in pseudocode is as
follows:

Class ClassName
Field declarations and method definitions go here...

End Class

The first line starts with the word Class, followed by the name of the class. In most
languages, you follow the same rules for naming variables as when naming classes.
Next, you write the declarations for the class’s fields and the definitions of the class’s
methods. (In general terms, the fields and methods that belong to a class are referred
to as the class’s members.) The words End Class appear at the end of the class
definition.

Now we will demonstrate how a class is typically created in an object-oriented lan-
guage. Because classes have several parts, we will not show the entire class all at once.
Instead, we will put it together in a step-by-step fashion.

Suppose we are designing a program for Wireless Solutions, a business that sells cell
phones and wireless service. The program will be used to keep track of the cell phones
that the company has in inventory. The data that we need to keep for a cell phone is as
follows:

● The name of the phone’s manufacturer
● The phone’s model number
● The phone’s retail price

If we were designing a procedural program, we would simply use variables to hold
this data. In this example, we are designing an object-oriented program, so we will
create a class that represents a cell phone. The class will have fields to hold these items
of data. The pseudocode in Class Listing 14-1 shows how we will start writing the
class definition:

Class Listing 14-1

1 Class CellPhone
2 // Field declarations
3 Private String manufacturer
4 Private String modelNumber
5 Private Real retailPrice
6
7 // This class is not finished!
8 End Class

First, notice that in line 1 we have named the class CellPhone. In this book, we will al-
ways begin class names with an uppercase letter. This is not required, but many pro-
grammers follow this practice because it helps distinguish class names from variable
names.

Lines 3, 4, and 5 declare three fields. Line 3 declares a String field named
manufacturer, line 4 declares a String field named modelNumber, and line 5 declares

526 Chapter 14 Object-Oriented Programming

a Real field named retailPrice. Notice that each declaration begins with the word
Private. When the word Private appears before a field declaration, it specifies that
the field cannot be directly accessed by any statement outside the class. In most object-
oriented programming languages, the word Private is known as an access specifier. It
specifies how a class field or method can be accessed.

By using the Private access specifier, a class can hide its data from code outside the
class. When a class’s fields are hidden from outside code, the data is protected from ac-
cidental corruption. It is a common practice in object-oriented programming to make
all of a class’s fields private and to provide access to those fields only through methods.
Next, we will add the following methods to the class, which will allow code outside the
class to store values in the fields:

● setManufacturer: The setManufacturer method will be a module that stores
a value in the manufacturer field.

● setModelNumber: The setModelNumber method will be a module that stores a
value in the modelNumber field.

● setRetailPrice: The setRetailPrice method will be a module that stores a
value in the retailPrice field.

The pseudocode in Class Listing14-2 shows how the CellPhone class will appear with
these methods added to it.

Class Listing 14-2

1 Class CellPhone
2 // Field declarations
3 Private String manufacturer
4 Private String modelNumber
5 Private Real retailPrice
6
7 // Method definitions
8 Public Module setManufacturer (String manufact)
9 Set manufacturer = manufact
10 End Module
11
12 Public Module setModelNumber (String modNum)
13 Set modelNumber = modNum
14 End Module
15
16 Public Module setRetailPrice (Real retail)
17 Set retailPrice = retail
18 End Module
19
20 // This class is not finished!
21 End Class

The setManufacturer method appears in lines 8 through 10. This looks like a reg-
ular module definition, except that the word Public appears in the header. In most
object-oriented languages, the word Public is an access specifier. When it is applied
to a method, it specifies that the method can be called from statements outside the
class.

14.2 Classes 527

The setManufacturer method has a String parameter named manufact. When the
method is called, a string must be passed to it as an argument. In line 9, the value
passed to the manufact parameter is assigned to the manufacturer field.

The setModelNumber method appears in lines 12 through 14. The method has a
String parameter named modNum. When the method is called, a string must be passed
to it as an argument. In line 13, the value passed to the modNum parameter is assigned
to the modelNumber field.

The setRetailPrice method has a Real parameter named retail. When the method
is called, a Real value must be passed to it as an argument. In line 17, the value passed
to the retail parameter is assigned to the retailPrice field.

Because the manufacturer, modelNumber, and retailPrice fields are private, we
wrote the setManufacturer, setModelNumber, and setRetailPrice methods to al-
low code outside the CellPhone class to store values in those fields. We must also
write methods that allow code outside the class to get the values that are stored in these
fields. For this purpose we will write the getManufacturer, getModelNumber, and
getRetailPrice methods. The getManufacturer method will return the value
stored in the manufacturer field, the getModelNumber method will return the value
stored in the modelNumber field, and the getRetailPrice method will return the
value stored in the retailPrice field.

The pseudocode in Class Listing 14-3 shows how the CellPhone class will appear with
these methods added to it. The new methods are shown in lines 20 through 30.

Class Listing 14-3

1 Class CellPhone
2 // Field declarations
3 Private String manufacturer
4 Private String modelNumber
5 Private Real retailPrice
6
7 // Method definitions
8 Public Module setManufacturer(String manufact)
9 Set manufacturer = manufact
10 End Module
11
12 Public Module setModelNumber(String modNum)
13 Set modelNumber = modNum
14 End Module
15
16 Public Module setRetailPrice(Real retail)
17 Set retailPrice = retail
18 End Module
19
20 Public Function String getManufacturer()
21 Return manufacturer
22 End Function
23
24 Public Function String getModelNumber()
25 Return modelNumber

528 Chapter 14 Object-Oriented Programming

26 End Function
27
28 Public Function Real getRetailPrice()
29 Return retailPrice
30 End Function
31 End Class

The getManufacturer method appears in lines 20 through 22. Notice that this
method is written as a function instead of a module. When the method is called, the
statement in line 21 returns the value stored in the manufacturer field.

The getModelNumber method in lines 24 through 26 and the getRetailPrice
method in lines 28 through 30 are also functions. The getModelNumber method returns
the value stored in the modelNumber field, and the getRetailPrice method returns
the value stored in the retailPrice field.

The pseudocode in Class Listing 14-3 is a complete class, but it is not a program. It is
a blueprint that objects may be created from. To demonstrate the class we must design
a program that uses it to create an object, as shown in Program 14-1.

Program 14-1

1 Module main()
2 // Declare a variable that can reference
3 // a CellPhone object.
4 Declare CellPhone myPhone
5
6 // The following statement creates an object
7 // using the CellPhone class as its blueprint.
8 // The myPhone variable will reference the object.
9 Set myPhone = New CellPhone()
10
11 // Store values in the object's fields.
12 Call myPhone.setManufacturer("Motorola")
13 Call myPhone.setModelNumber("M1000")
14 Call myPhone.setRetailPrice(199.99)
15
16 // Display the values stored in the fields.
17 Display "The manufacturer is ", myPhone.getManufacturer()
18 Display "The model number is ", myPhone.getModelNumber()
19 Display "The retail price is ", myPhone.getRetailPrice()
20 End Module

Program Output

The manufacturer is Motorola
The model number is M1000
The retail price is 199.99

The statement in line 4 is a variable declaration. It declares a variable named myPhone.
This statement looks like any other variable declaration that you have seen, except that
the data type is the name of the CellPhone class. This is shown in Figure 14-6. When

14.2 Classes 529

Declare CellPhone myPhone

Data type Variable
name

Figure 14-6 Class variable declaration

you declare a variable and specify the name of a class as the variable’s data type, you
are creating a class variable. A class variable is a special type of variable that can refer-
ence an object in the computer’s memory, and work with that object. The myPhone
variable that is declared in line 4 can be used to reference an object that is created from
the CellPhone class.

Set myPhone = New CellPhone()

This creates an object in
memory using the CellPhone

class as its blueprint.

The object’s memory
address is assigned

to the myPhone
variable.

Figure 14-7 Creating an object and assigning its address to a class variable

In many object-oriented languages, the act of declaring a class variable does not actu-
ally create an object in memory. It only creates a variable that can be used to work with
an object. The next step is to create an object. This is done with the following assign-
ment statement, which appears in line 9:

Set myPhone = New CellPhone()

Notice that on the right side of the = operator, the key word New appears. In many pro-
gramming languages, the key word New creates an object in memory. The name of a
class appears next (in this case it is CellPhone), followed by a set of parentheses. This
specifies the class that should be used as a blueprint to create the object. Once the ob-
ject is created, the = operator assigns the memory address of the object to the myPhone
variable. The actions performed by this statement are shown in Figure 14-7.

When a class variable is assigned the address of an object, it is said that the variable
references the object. As shown in Figure 14-8, the myPhone variable will reference a
CellPhone object after this statement executes.

A CellPhone object

manufacturer:
modelNumber:
retailPrice:

The myPhone variable
holds the address of
a CellPhone object.

Address

Figure 14-8 The myPhone variable references a CellPhone object

530 Chapter 14 Object-Oriented Programming

The following statement, which appears in line 12, is next:

Call myPhone.setManufacturer("Motorola")

This statement calls the myPhone.setManufacturer method. The expression
myPhone.setManufacturer is written in dot notation. It’s called dot notation because
programmers refer to the period as a “dot.” On the left side of the dot is the name of a
class variable that references an object. On the right side of the dot is the name of the
method we are calling. When this statement executes, it uses the object referenced by
myPhone to call the setManufacturer method, passing the string "Motorola" as an
argument. As a result, the string "Motorola" will be assigned to the object’s
manufacturer field.

Line 13 calls the myPhone.setModelNumber method, passing the string "M1000" as an ar-
gument. After this statement executes, the string "M1000" will be stored in the object’s
modelNumber field. Line 14 calls the myPhone.setRetailPrice method, passing 199.99
as an argument. This causes 199.99 to be assigned to the retailPrice field. Figure 14-9
shows the state of the object after the statements in lines 12 through 14 execute.

A CellPhone object

manufacturer:

modelNumber:

retailPrice:

The myPhone variable Address
"Motorola"

"M1000"
199.99

Figure 14-9 The state of the object referenced by myPhone

The statements in lines 17 through 19 display the values in the object’s fields. Here is
the statement in line 17:

Display "The manufacturer is ", myPhone.getManufacturer()

This statement calls the myPhone.getManufacturer method, which returns the string
"Motorola". The following message is displayed on the screen:

The manufacturer is Motorola

The following statement, in line 18, executes next:

Display "The model number is ", myPhone.getModelNumber()

This statement calls the myPhone.getModelNumber method, which returns the string
"M1000". The following message is displayed on the screen:

The model number is M1000

The following statement, in line 19, executes next:

Display "The retail price is ", myPhone.getRetailPrice()

NOTE: In some languages, such as C++, the act of declaring a class variable also
creates an object in memory. In these languages, it is not necessary to use the New key
word to create the object as we did in line 9 of Program 14-1.

14.2 Classes 531

This statement calls the myPhone.getRetailPrice method, which returns the value
199.99. The following message is displayed on the screen:

The retail price is 199.99

Accessor and Mutator Methods
As mentioned earlier, it is a common practice to make all of a class’s fields private and
to provide public methods for accessing and changing those fields. This ensures that
the object owning those fields is in control of all changes being made to them. A
method that gets a value from a class’s field but does not change it is known as an
accessor method. A method that stores a value in a field or changes the value of a field
in some other way is known as a mutator method. In the CellPhone class, the methods
getManufacturer, getModelNumber, and getRetailPrice are accessors, and the
methods setManufacturer, setModelNumber, and getRetailPrice are mutators.

NOTE: Mutator methods are sometimes called “setters” and accessor methods are
sometimes called “getters.”

NOTE: In Visual Basic, constructors are named New.

Constructors
A constructor is a method that is automatically called when an object is created. In
most cases, a constructor is used to initialize an object’s fields with starting values.
These methods are called “constructors” because they help construct an object.

In many programming languages, a constructor has the same name as the class that the
constructor is in. That is the convention followed in this book. For example, if we
write a constructor in the CellPhone class, we will write a module named CellPhone.
The pseudocode in Class Listing 14-4 shows a new version of the class with a construc-
tor added to it. The constructor appears in lines 8 through 13.

Class Listing 14-4

1 Class CellPhone
2 // Field declarations
3 Private String manufacturer
4 Private String modelNumber
5 Private Real retailPrice
6
7 // Constructor
8 Public Module CellPhone(String manufact,
9 String modNum, Real retail)
10 Set manufacturer = manufact
11 Set modelNumber = modNum
12 Set retailPrice = retail
13 End Module
14

532 Chapter 14 Object-Oriented Programming

15 // Mutator methods
16 Public Module setManufacturer(String manufact)
17 Set manufacturer = manufact
18 End Module
19
20 Public Module setModelNumber(String modNum)
21 Set modelNumber = modNum
22 End Module
23
24 Public Module setRetailPrice(String retail)
25 Set retailPrice = retail
26 End Module
27
28 // Accessor methods
29 Public Function String getManufacturer()
30 Return manufacturer
31 End Function
32
33 Public Function String getModelNumber()
34 Return modelNumber
35 End Function
36
37 Public Function Real getRetailPrice()
38 Return retailPrice
39 End Function
40 End Class

The constructor accepts three arguments, which are passed into the manufact,
modNum, and retail parameters. In lines 10 through 12, these parameters are assigned
to the manufacturer, modelNumber, and retailPrice fields.

The pseudocode in Program 14-2 creates a CellPhone object and uses the constructor
to initialize the object’s fields. In line 9, notice that after the class name, the values
"Motorola", "M1000", and 199.99 appear inside the parentheses. These arguments
are passed to the manufact, modelNum, and retail parameters in the constructor. The
code in the constructor then assigns those values to the manufacturer, modelNumber,
and retailPrice fields.

Program 14-2

1 Module main()
2 // Declare a variable that can reference
3 // a CellPhone object.
4 Declare CellPhone myPhone
5
6 // The following statement creates a CellPhone
7 // object and initializes its fields with the
8 // values passed to the constructor.
9 Set myPhone = New CellPhone("Motorola", "M1000", 199.99)
10
11 // Display the values stored in the fields.
12 Display "The manufacturer is ", myPhone.getManufacturer()
13 Display "The model number is ", myPhone.getModelNumber()
14 Display "The retail price is ", myPhone.getRetailPrice()
15 End Module

14.2 Classes 533

Program Output

The manufacturer is Motorola
The model number is M1000
The retail price is 199.99

The pseudocode in Program 14-3 shows another example that uses the CellPhone
class. This program prompts the user to enter the data for a cell phone and then creates
an object containing that data.

Program 14-3

1 Module main()
2 // Variables to hold data entered by the user.
3 Declare String manufacturer, model
4 Declare Real retail
5
6 // Declare a variable that can reference
7 // a CellPhone object.
8 Declare CellPhone phone
9
10 // Get the data for a cell phone from the user.
11 Display "Enter the phone's manufacturer."
12 Input manufacturer
13 Display "Enter the phone's model number."
14 Input model
15 Display "Enter the phone's retail price."
16 Input retail
17
18 // Create a CellPhone object initialized with the
19 // data entered by the user.
20 Set phone = New CellPhone(manufacturer, model, retail)
21
22 // Display the values stored in the fields.
23 Display "Here is the data you entered."
24 Display "The manufacturer is ", myPhone.getManufacturer()
25 Display "The model number is ", myPhone.getModelNumber()
26 Display "The retail price is ", myPhone.getRetailPrice()
27 End Module

Program Output (with Input Shown in Bold)

Enter the phone's manufacturer.
Samsung [Enter]
Enter the phone's model number.
S900 [Enter]
Enter the phone's retail price.
179.99 [Enter]
Here is the data you entered.
The manufacturer is Samsung
The model number is S900
The retail price is 179.99

534 Chapter 14 Object-Oriented Programming

Default Constructors
In most object-oriented languages, when an object is created its constructor is always
called. But what if we do not write a constructor in the class that the object is created
from? If you do not write a constructor in a class, most languages automatically pro-
vide one when the class is compiled. The constructor that is automatically provided is
usually known as the default constructor. The actions performed by the default con-
structor vary from one language to another. Typically, the default constructor assigns
default starting values to the object’s fields.

Checkpoint

14.5 You hear someone make the following comment: “A blueprint is a design for a
house. A carpenter can use the blueprint to build the house. If the carpenter
wishes, he or she can build several identical houses from the same blueprint.”
Think of this as a metaphor for classes and objects. Does the blueprint represent
a class, or does it represent an object?

14.6 In this chapter, we use the metaphor of a cookie cutter and cookies that are
made from the cookie cutter to describe classes and objects. In this metaphor,
are objects the cookie cutter, or the cookies?

14.7 What is an access specifier?

14.8 What access specifier is commonly used with a class’s fields?

14.9 When a class variable is said to reference an object, what is actually stored in
the class variable?

14.10 What does the New key word do?

14.11 What is an accessor? What is a mutator?

14.12 What is a constructor? When does a constructor execute?

14.13 What is a default constructor?

14.3 Using the Unified Modeling Language
to Design Classes

CONCEPT: The Unified Modeling Language (UML) is a standard way of drawing
diagrams that describe object-oriented systems.

When designing a class, it is often helpful to draw a UML diagram. UML stands for
Unified Modeling Language. It provides a set of standard diagrams for graphically
depicting object-oriented systems. Figure 14-10 shows the general layout of a UML
diagram for a class. Notice that the diagram is a box that is divided into three sections.
The top section is where you write the name of the class. The middle section holds a list
of the class’s fields. The bottom section holds a list of the class’s methods.

14.3 Using the Unified Modeling Language to Design Classes 535

Following this layout, Figure 14-11 shows a simplified UML diagram for our CellPhone
class.

Class name goes here

Fields are listed here

Methods are listed here

Figure 14-10 General layout of a UML diagram for a class

CellPhone

manufacturer
modelNumber
retailPrice

CellPhone()
setManufacturer()
setModelNumber()
setRetailPrice()
getManufacturer()
getModelNumber()
getRetailPrice()

Figure 14-11 Simplified UML diagram for the CellPhone class

Data Type and Method Parameter Notation
The UML diagram in Figure 14-11 shows only basic information about the CellPhone
class. It does not show details such as data types and the method’s parameters. To indi-
cate the data type of a field, place a colon followed by the name of the data type after
the name of the field. For example, the manufacturer field in the CellPhone class is a
String. It could be listed in the UML diagram as follows:

manufacturer : String

The return type of a method can be listed in the same manner. After the method’s
name, place a colon followed by the return type. The CellPhone class’s
getRetailPrice method returns a Real, so it could be listed in the UML diagram
as follows:

getRetailPrice() : Real

Parameter variables and their data types may be listed inside a method’s parentheses.
For example, the CellPhone class’s setManufacturer method has a String parame-
ter named manufact, so it could be listed in the UML diagram as follows:

setManufacturer(manufact : String)

Figure 14-12 shows the UML diagram for the CellPhone class with data type and
parameter notation added to it.

536 Chapter 14 Object-Oriented Programming

Access Specification Notation
The UML diagrams in Figures 14-11 and 14-12 list all of the fields and methods in the
CellPhone class but do not indicate which are private and which are public. In a UML
diagram, you have the option to place a - character before a field or method name to
indicate that it is private, or a + character to indicate that it is public. Figure 14-13
shows the UML diagram modified to include this notation.

CellPhone

manufacturer : String
modelNumber : String
retailPrice : Real

CellPhone(manufact : String,
 modelNum : String, retail : Real)
setManufacturer(manufact : String)
setModelNumber(modNum : String)
setRetailPrice(retail : Real)
getManufacturer() : String
getModelNumber() : String
getRetailPrice() : Real

Figure 14-12 UML diagram for the CellPhone class with data type and parameter notation

Checkpoint

14.14 The typical UML diagram for a class has three sections. What appears in these
three sections?

14.15 Suppose a class has a field named description. The field’s data type is
String. How would you indicate the field’s data type in a UML diagram?

14.16 What symbols do you use in a UML diagram to indicate private and public
access specification?

CellPhone

– manufacturer : String
– modelNumber : String
– retailPrice : Real

+ CellPhone(manufact : String,
 modelNum : String, retail : Real)
+ setManufacturer(manufact : String)
+ setModelNumber(modNum : String)
+ setRetailPrice(retail : Real)
+ getManufacturer() : String
+ getModelNumber() : String
+ getRetailPrice() : Real

Figure 14-13 UML diagram for the CellPhone class with access specification notation

14.4 Finding the Classes and Their Responsibilities in a Problem 537

14.4 Finding the Classes and Their
Responsibilities in a Problem

CONCEPT: One of the first steps when designing an object-oriented program is
finding the classes that should be created and determining those classes’
responsibilities in the program.

So far, you have learned the basics of writing a class, creating an object from the class,
and using the object to perform operations. Although this knowledge is necessary to
create an object-oriented application, it is not the first step. The first step is to analyze
the problem that you are trying to solve and determine the classes that you will need.
The following two In the Spotlight sections lead you through a simple process for find-
ing the classes in a problem and determining their responsibilities.

In the Spotlight:
Finding the Classes in a Problem
The owner of Joe’s Automotive Shop has asked you to design a program that will print
service quotes for customers. You decide to use an object-oriented approach to design
the program. One of your first tasks is to identify the classes that you will need to cre-
ate. In many cases, this means identifying the different types of real-world objects that
are present in the problem, and then creating classes for those types of objects within
your program.

Over the years, software professionals have developed numerous techniques for finding
the classes in a given problem. One simple and popular technique involves the follow-
ing steps:

1. Get a written description of the problem domain.
2. Identify all the nouns (including pronouns and noun phrases) in the description.

Each of these is a potential class.
3. Refine the list to include only the classes that are relevant to the problem.

Let’s take a closer look at each of these steps.

Writing a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related
to the problem. If you adequately understand the nature of the problem you are trying
to solve, you can write a description of the problem domain yourself. If you do not
thoroughly understand the nature of the problem, you should have an expert write the
description for you.

A problem domain description should include any or all of the following:

● Physical objects, such as vehicles, machines, or products
● Roles played by people, such as manager, employee, customer, teacher, student,

and so on

538 Chapter 14 Object-Oriented Programming

● The results of a business event, such as a customer order, or in this case a service
quote

● Record-keeping items, such as customer histories and payroll records

Here is a description that was written by Joe, the owner of Joe’s Automotive Shop:

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made
by Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the
manager gets the customer’s name, address, and telephone number. The manager
then determines the make, model, and year of the car, and gives the customer a serv-
ice quote. The service quote shows the estimated parts charges, estimated labor
charges, sales tax, and total estimated charges.

Identifying All of the Nouns

The next step is to identify all of the nouns and noun phrases in the problem descrip-
tion. (If the description contains pronouns, include them too.) Here’s another look at
the previous problem domain description that was written by Joe. This time the nouns
and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made
by Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the
manager gets the customer’s name, address, and telephone number. The manager
then determines the make, model, and year of the car, and gives the customer a
service quote. The service quote shows the estimated parts charges, estimated labor
charges, sales tax, and total estimated charges.

Notice that some of the nouns are repeated. The following list shows all of the nouns
without duplicates:

address Mercedes
BMW model
car name
cars Porsche
customer sales tax
estimated labor charges service quote
estimated parts charges shop
foreign cars telephone number
Joe’s Automotive Shop total estimated charges
make year
manager

Refining the List of Nouns

The nouns that appear in the problem description are merely candidates to become
classes. It might not be necessary to make classes for all of them. The next step is to
refine the list to include only the classes that are necessary to solve the particular prob-
lem at hand. We will look at the common reasons that a noun can be eliminated from
the list of potential classes.

1. Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

14.4 Finding the Classes and Their Responsibilities in a Problem 539

● cars and foreign cars
Both of these refer to the general concept of a car.

● Joe’s Automotive Shop and shop
Both of these refer to the company “Joe’s Automotive Shop.”

We can settle on a single class for each of these. In this example, we will arbitrarily
eliminate foreign cars from the list, and use the word cars. Likewise, we will elimi-
nate Joe’s Automotive Shop from the list and use the word shop. The updated list of
potential classes is as follows:

address Mercedes
BMW model
car name
cars Porsche
customer sales tax
estimated labor charges service quote
estimated parts charges shop
foreign cars telephone number
Joe’s Automotive Shop total estimated charges
make year
manager

Because cars and foreign cars mean the same thing in this problem, we have elim-
inated foreign cars. Also, because Joe’s Automotive Shop and shop mean the
same thing, we have eliminated Joe’s Automotive Shop.

2. Some nouns might represent items that we do not need to be concerned with in
order to solve the problem.

A quick review of the problem description reminds us of what our application
should do: print a service quote. In this example, we can eliminate two unneces-
sary classes from the list:

● We can cross shop off the list because our application only needs to be con-
cerned with individual service quotes. It doesn’t need to work with or deter-
mine any company-wide information. If the problem description asked us to
keep a total of all the service quotes, then it would make sense to have a class
for the shop.

● We will not need a class for the manager because the problem statement does
not direct us to process any information about the manager. If there were mul-
tiple shop managers, and the problem description had asked us to record
which manager generated each service quote, then it would make sense to have
a class for the manager.

The updated list of potential classes at this point is as follows:

address estimated parts charges
BMW foreign cars
car Joe’s Automotive Shop
cars make
customer manager
estimated labor charges Mercedes

540 Chapter 14 Object-Oriented Programming

TIP : Some object-oriented designers note whether a noun is plural or singular.
Sometimes a plural noun will indicate a class and a singular noun will indicate an
object.

model shop
name telephone number
Porsche total estimated charges
sales tax year
service quote

Our problem description does not direct us to process any information about
the shop, or any information about the manager, so we have eliminated those
from the list.

3. Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this ex-
ample, they all represent specific cars, and can be considered instances of the
cars class. Also, we can eliminate the word car from the list. In the description,
it refers to a specific car brought to the shop by a customer. Therefore, it would
also represent an instance of the cars class. At this point the updated list of
potential classes is as follows:

address Mercedes
BMW model
car name
cars Porsche
customer sales tax
estimated labor charges service quote
estimated parts charges shop
foreign cars telephone number
Joe’s Automotive Shop total estimated charges
make year
manager

We have eliminated Mercedes, Porsche, BMW, and car because they are all in-
stances of the cars class. That means that these nouns identify objects, not
classes.

4. Some of the nouns might represent simple values that can be stored in a regular
variable and do not require a class.

Remember, a class contains fields and methods. Fields are related items that
are stored within an object of the class, and define the object’s state. Methods
are actions or behaviors that may be performed by an object of the class. If a
noun represents a type of item that would not have any identifiable fields or
methods, then it can probably be eliminated from the list. To help determine
whether a noun represents an item that would have fields and methods, ask
the following questions:

14.4 Finding the Classes and Their Responsibilities in a Problem 541

● Would you use a group of related values to represent the item’s state?
● Are there any obvious actions to be performed by the item?

If the answers to both of these questions are no, then the noun probably repre-
sents a value that can be stored in a regular variable. If we apply this test to each
of the nouns that remain in our list, we can conclude that the following are prob-
ably not classes: address, estimated labor charges, estimated parts charges, make,
model, name, sales tax, telephone number, total estimated charges, and year.
These are all simple string or numeric values that can be stored in variables. The
following is the updated list of potential classes:

address Mercedes
BMW model
car name
cars Porsche
customer sales tax
estimated labor charges service quote
estimated parts charges shop
foreign cars telephone number
Joe’s Automotive Shop total estimated charges
make year
manager

We have eliminated address, estimated labor charges, estimated parts charges,
make, model, name, sales tax, telephone number, total estimated charges, and
year as classes because they represent simple values that can be stored in prim-
itive variables.

As you can see from the list, we have eliminated everything except cars, customer,
and service quote. This means that in our application, we will need classes to rep-
resent cars, customers, and service quotes. In the next In the Spotlight section, we
will write a Car class, a Customer class, and a ServiceQuote class.

In the Spotlight:
Determining Class Responsibilities
In the previous In the Spotlight section, we examined the problem domain description
for the Joe’s Automotive Shop program. We also identified the classes that we will
need, which are Car, Customer, and ServiceQuote. The next step is to determine
those classes’ responsibilities. A class’s responsibilities are as follows:

● The things that the class is responsible for knowing
● The actions that the class is responsible for doing

When you have identified the things that a class is responsible for knowing, then
you have identified the values that will be stored in fields. Likewise, when you have
identified the actions that a class is responsible for doing, you have identified its
methods.

542 Chapter 14 Object-Oriented Programming

It is often helpful to ask the questions “In this program, what must the class know?
What must the class do?” The first place to look for the answers is in the description of
the problem domain. Many of the things that a class must know and do will be men-
tioned. Some class responsibilities, however, might not be directly mentioned in the
problem domain, so brainstorming is often required. Let’s apply this methodology to
the classes we previously identified from our problem domain.

The Customer Class

In this program, what must the Customer class know? The problem domain descrip-
tion directly mentions the following items:

● The customer’s name
● The customer’s address
● The customer’s telephone number

These are all values that can be represented as strings and stored in the class’s fields.
The Customer class can potentially know many other things. One mistake that can be
made at this point is to identify too many things that an object is responsible for know-
ing. In some programs, a Customer class might know the customer’s email address.
This particular problem domain does not mention that the customer’s email address is
used for any purpose, so we should not include it as a responsibility.

Now, let’s identify the class’s methods. In this program, what must the Customer class
do? The following are the only obvious actions:

● Create an object of the Customer class
● Set and get the customer’s name
● Set and get the customer’s address
● Set and get the customer’s telephone number

From this list, we can see that the Customer class will have a constructor, as well as
accessor and mutator methods, for each of its fields. Figure 14-14 shows a UML
diagram for the Customer class. Class Listing 14-5 shows the pseudocode for a
class definition.

Customer

– name : String
– address : String
– phone : String

+ Customer(n : String, a : String,
 p : String)
+ setName(n : String)
+ setAddress(a : String)
+ setPhone(p : String)
+ getName() : String
+ getAddress() : String
+ getPhone() : String

Figure 14-14 UML diagram for the Customer class

14.4 Finding the Classes and Their Responsibilities in a Problem 543

Class Listing 14-5

1 Class Customer
2 // Fields
3 Private String name
4 Private String address
5 Private String phone
6
7 // Constructor
8 Public Module Customer(String n, String a,
9 String p)
10 Set name = n
11 Set address = a
12 Set phone = p
13 End Module
14
15 // Mutators
16 Public Module setName(String n)
17 Set name = n
18 End Module
19
20 Public Module setAddress(String a)
21 Set address = a
22 End Module
23
24 Public Module setPhone(String p)
25 Set phone = p
26 End Module
27
28 // Accessors
29 Public Function String getName()
30 Return name
31 End Function
32
33 Public Function String getAddress()
34 Return address
35 End Function
36
37 Public Function String getPhone()
38 Return phone
39 End Function
40 End Class

The Car Class

In this program, what must an object of the Car class know? The following items are
all attributes of a car, and are mentioned in the problem domain:

● the car’s make
● the car’s model
● the car’s year

544 Chapter 14 Object-Oriented Programming

Now let’s identify the class’s methods. In this program, what must the Car class do?
Once again, the only obvious actions are the standard set of methods that we will find
in most classes (constructors, accessors, and mutators). Specifically, the actions are as
follows:

● create an object of the Car class
● set and get the car’s make
● set and get the car’s model
● set and get the car’s year

Figure 14-15 shows a UML diagram for the Car class, and Class Listing 14-6 shows
the pseudocode for a class definition.

Car

– make : String
– model : String
– year : Integer

+ Car(carMake : String,
 carModel : String,
 carYear : Integer)
+ setMake(m : String)
+ setModel(m : String)
+ setYear(y : Integer)
+ getMake() : String
+ getModel() : String
+ getYear() : Integer

Figure 14-15 UML diagram for the Car class

Class Listing 14-6

1 Class Car
2 // Fields
3 Private String make
4 Private String model
5 Private Integer year
6
7 // Constructor
8 Public Module Car(String carMake,
9 String carModel, Integer carYear)
10 Set make = carMake
11 Set model = carModel
12 Set year = carYear
13 End Module
14
15 // Mutators
16 Public Module setMake(String m)
17 Set make = m
18 End Module
19
20 Public Module setModel(String m)
21 Set model = m
22 End Module

14.4 Finding the Classes and Their Responsibilities in a Problem 545

23
24 Public Module setYear(Integer y)
25 Set year = y
26 End Module
27
28 // Accessors
29 Public Function String getMake()
30 Return make
31 End Function
32
33 Public Function String getModel()
34 Return model
35 End Function
36
37 Public Function Integer getYear()
38 Return year
39 End Function
40 End Class

The ServiceQuote Class

In this program, what must an object of the ServiceQuote class know? The problem
domain mentions the following items:

● the estimated parts charges
● the estimated labor charges
● the sales tax
● the total estimated charges

Careful thought and a little brainstorming will reveal that two of these items are the
results of calculations: sales tax and total estimated charges. These items are depen-
dent on the values of the estimated parts and labor charges. Instead of storing these
values in fields, we will provide methods that calculate these values and return them.
(In a moment we will explain why we take this approach.)

The other methods that we will need for this class are a constructor and the accessors
and mutators for the estimated parts charges and estimated labor charges fields. Figure
14-16 shows a UML diagram for the ServiceQuote class, and Class Listing 14-7
shows the pseudocode for a class definition.

– partsCharges : Real
– laborCharges : Real

+ ServiceQuote(pc : Real, lc : Real)
+ setPartsCharges(pc : Real)
+ setLaborCharges(lc : Real)
+ getPartsCharges() : Real
+ getLaborCharges() : Real
+ getSalesTax(taxRate : Real) : Real
+ getTotalCharges() : Real

ServiceQuote

Figure 14-16 UML diagram for the ServiceQuote class

546 Chapter 14 Object-Oriented Programming

Class Listing 14-7

1 Class ServiceQuote
2 // Fields
3 Private Real partsCharges
4 Private Real laborCharges
5
6 // Constructor
7 Public Module ServiceQuote(Real pc, Real lc)
8 Set partsCharges = pc
9 Set laborCharges = lc
10 End Module
11
12 // Mutators
13 Public Module setPartsCharges(Real pc)
14 Set partsCharges = pc
15 End Module
16
17 Public Module setLaborCharges(Real lc)
18 Set laborCharges = lc
19 End Module
20
21 // Accessors
22 Public Function Real getPartsCharges()
23 Return partsCharges
24 End Function
25
26 Public Function Real getLaborCharges()
27 Return laborCharges
28 End Function
29
30 Public Function Real getSalesTax(Real taxRate)
31 // Sales tax is charged only on parts.
32 Return partsCharges * taxRate
33 End Function
34
35 Public Function Real getTotalCharges(Real taxRate)
36 Return partsCharges + laborCharges + getSalesTax(taxRate)
37 End Function
38 End Class

First, notice that the getSalesTax method, in lines 30 through 33, accepts a Real ar-
gument for the tax rate. The method returns the amount of sales tax in line 32, which
is the result of a calculation.

The getTotalCharges method, in lines 35 through 37, returns the total charges esti-
mate. The value that is returned by this method is the result of a calculation. The
value that is returned in line 36 is the result of the expression partsCharges +
laborCharges + getSalesTax(taxRate). Notice that this expression calls one of
the object’s own methods: getSalesTax.

14.5 Inheritance 547

Checkpoint

14.17 What is a problem domain description?

14.18 What technique was described in this section for finding the classes in a particular
problem?

14.19 What are classes’ responsibilities?

14.20 What causes an item of data to become stale?

14.5 Inheritance

CONCEPT: Inheritance allows a new class to extend an existing class. The new
class inherits the members of the class it extends.

Generalization and Specialization
In the real world, you can find many objects that are specialized versions of other more
general objects. For example, the term insect describes a very general type of creature
with numerous characteristics. Because grasshoppers and bumblebees are insects, they
have all the general characteristics of an insect. In addition, they have special character-
istics of their own. For example, the grasshopper has its jumping ability, and the bum-
blebee has its stinger. Grasshoppers and bumblebees are specialized versions of an
insect. This is illustrated in Figure 14-17.

Avoiding Stale Data

In the ServiceQuote class, the getPartsCharges and getLaborCharges methods re-
turn the values stored in fields, but the getSalesTax and getTotalCharges methods
return the results of calculations. You might be wondering why the sales tax and the to-
tal charges are not stored in fields, like the parts charges and labor charges. These val-
ues are not stored in fields because they could potentially become stale. When the value
of an item is dependent on other data and that item is not updated when the other data
is changed, it is said that the item has become stale. If the sales tax and total charges
were stored in fields, the values of those fields would become incorrect as soon as the
partsCharges or laborCharges fields changed.

When designing a class, you should take care not to store in a field any calculated data
that can potentially become stale. Instead, provide a method that returns the result of
the calculation.

548 Chapter 14 Object-Oriented Programming

Inheritance and the “Is a” Relationship
When one object is a specialized version of another object, there is an “is a” relation-
ship between them. For example, a grasshopper is an insect. Here are a few other ex-
amples of the “is a” relationship:

● A poodle is a dog.
● A car is a vehicle.
● A flower is a plant.
● A rectangle is a shape.
● A football player is an athlete.

When an “is a” relationship exists between objects, it means that the specialized object
has all of the characteristics of the general object, plus additional characteristics that
make it special. In object-oriented programming, inheritance is used to create an “is a”
relationship among classes. This allows you to extend the capabilities of a class by cre-
ating another class that is a specialized version of it.

Inheritance involves a superclass and a subclass. The superclass is the general class
and the subclass is the specialized class. You can think of the subclass as an extended
version of the superclass. The subclass inherits fields and methods from the super-
class without any of them having to be rewritten. Furthermore, new fields and meth-
ods may be added to the subclass, and that is what makes it a specialized version of
the superclass.

Insect All insects have
certain characteristics.

In addition to the common
insect characteristics, the

 bumblebee has its own unique
characteristics, such as the

ability to sting.

In addition to the common
insect characteristics, the

 grasshopper has its own unique
characteristics, such as the

ability to jump.

Figure 14-17 Bumblebees and grasshoppers are specialized versions of an insect

NOTE : Superclasses are also called base classes, and subclasses are also called
derived classes. Either set of terms is correct. For consistency, this text will use the
terms superclass and subclass.

Let’s look at an example of how inheritance can be used. Most teachers assign various
graded activities for their students to complete. A graded activity can be given a nu-
meric score such as 70, 85, 90, and so on, and a letter grade such as A, B, C, D, or F.

14.5 Inheritance 549

Figure 14-18 shows a UML diagram for the GradedActivity class, which is designed
to hold the numeric score of a graded activity. The setScore method sets a numeric
score, and the getScore method returns the numeric score. The getGrade method re-
turns the letter grade that corresponds to the numeric score. Class Listing 14-8 shows
the pseudocode for the class. The pseudocode in Program 14-4 demonstrates how the
class works.

– score : Real

+ setScore(s : Real)
+ getScore() : Real
+ getGrade() : String

GradedActivity

Figure 14-18 UML diagram for the GradedActivity class

Class Listing 14-8

1 Class GradedActivity
2 // The score field holds a numeric score.
3 Private Real score
4
5 // Mutator
6 Public Module setScore(Real s)
7 Set score = s
8 End Module
9
10 // Accessor
11 Public Function Real getScore()
12 Return score
13 End Function
14
15 // getGrade method
16 Public Function String getGrade()
17 // Local variable to hold a grade.
18 Declare String grade
19
20 // Determine the grade.
21 If score >= 90 Then
22 Set grade = "A"
23 Else If score >= 80 Then
24 Set grade = "B"
25 Else If score >= 70 Then
26 Set grade = "C"
27 Else If score >= 60 Then
28 Set grade = "D"
29 Else
30 Set grade = "F"
31 End If
32

550 Chapter 14 Object-Oriented Programming

33 // Return the grade.
34 Return grade
35 End Function
36 End Class

Program 14-4

1 Module main()
2 // A variable to hold a test score.
3 Declare Real testScore
4
5 // A class variable to reference a
6 // GradedActivity object.
7 Declare GradedActivity test
8
9 // Create a GradedActivity object.
10 Set test = New GradedActivity()
11
12 // Get a test score from the user.
13 Display "Enter a numeric test score."
14 Input testScore
15
16 // Store the test score in the object.
17 test.setScore(testScore)
18
19 // Display the grade for the object.
20 Display "The grade for that test is ",
21 test.getGrade()
22 End Module

Program Output (with Input Shown in Bold)

Enter a numeric test score.
89 [Enter]
The grade for that test is B

Program Output (with Input Shown in Bold)

Enter a numeric test score.
75 [Enter]
The grade for that test is C

The GradedActivity class represents the general characteristics of a student’s graded
activity. Many different types of graded activities exist, however, such as quizzes,
midterm exams, final exams, lab reports, essays, and so on. Because the numeric scores
might be determined differently for each of these graded activities, we can create sub-
classes to handle each one. For example, we could create a FinalExam class that would
be a subclass of the GradedActivity class. Figure 14-19 shows the UML diagram for
such a class, and Class Listing 14-9 shows its definition in pseudocode. The class has
fields for the number of questions on the exam (numQuestions), the number of points
each question is worth (pointsEach), and the number of questions missed by the student
(numMissed).

14.5 Inheritance 551

Class Listing 14-9

1 Class FinalExam Extends GradedActivity
2 // Fields
3 Private Integer numQuestions
4 Private Real pointsEach
5 Private Integer numMissed
6
7 // The constructor sets the number of
8 // questions on the exam and the number
9 // of questions missed.
10 Public Module FinalExam(Integer questions,
11 Integer missed)
12 // Local variable to hold the numeric score.
13 Declare Real numericScore
14
15 // Set the numQuestions and numMissed fields.
16 Set numQuestions = questions
17 Set numMissed = missed
18
19 // Calculate the points for each question
20 // and the numeric score for this exam.
21 Set pointsEach = 100.0 / questions
22 Set numericScore = 100.0 - (missed * pointsEach)
23
24 // Call the inherited setScore method to
25 // set the numeric score.
26 Call setScore(numericScore)
27 End Module
28
29 // Accessors
30 Public Function Real getPointsEach()
31 Return pointsEach
32 End Function
33
34 Public Function Integer getNumMissed()
35 Return numMissed
36 End Function
37 End Class

FinalExam

– numQuestions : Integer
– pointsEach : Real
– numMissed : Integer

+ FinalExam(questions : Integer,
 missed : Integer)
+ getPointsEach() : Real
+ getNumMissed() : Integer

Figure 14-19 UML diagram for the FinalExam class

552 Chapter 14 Object-Oriented Programming

Notice that the first line of the FinalExam class declaration uses the Extends key
word, which indicates that this class extends another class (a superclass). The name of
the superclass is listed after the word extends. So, this line indicates that FinalExam is
the name of the class being declared and GradedActivity is the name of the super-
class it extends.

If we want to express the relationship between the two classes, we can say that a
FinalExam is a GradedActivity. Because the FinalExam class extends the
GradedActivity class, it inherits all of the public members of the GradedActivity
class. Here is a list of the members of the FinalExam class:

Fields:
numQuestions Declared in the FinalExam class
pointsEach Declared in the FinalExam class
numMissed Declared in the FinalExam class

Methods:
Constructor Declared in the FinalExam class
getPointsEach Declared in the FinalExam class
getNumMissed Declared in the FinalExam class
setScore Inherited from the GradedActivity class
getScore Inherited from the GradedActivity class
getGrade Inherited from the GradedActivity class

Notice that the GradedActivity class’s score field is not listed among the members
of the FinalExam class. That is because the score field is private. In most languages,
private members of the superclass cannot be accessed by the subclass, so technically
speaking, they are not inherited. When an object of the subclass is created, the private
members of the superclass exist in memory, but only methods in the superclass can
access them. They are truly private to the superclass.

To see how inheritance works in this example, let’s take a closer look at the FinalExam
constructor in lines 10 through 27. The constructor accepts two arguments: the num-
ber of test questions on the exam, and the number of questions missed by the student.
In lines 16 and 17 these values are assigned to the numQuestions and numMissed
fields. Then, in lines 21 and 22, the number of points for each question and the nu-
meric test score are calculated. In line 26, the last statement in the constructor reads as
follows:

Call setScore(numericScore)

This is a call to the setScore method, which is inherited from the GradedActivity
class. Although the FinalExam constructor cannot directly access the score field (be-
cause it is declared private in the GradedActivity class), it can call the setScore
method to store a value in the score field.

The pseudocode in Program 14-5 demonstrates the FinalExam class.

Program 14-5

1 Module main()
2 // Variables to hold user input.
3 Declare Integer questions, missed

14.5 Inheritance 553

4
5 // Class variable to reference a FinalExam object.
6 Declare FinalExam exam
7
8 // Prompt the user for the number of questions
9 // on the exam.
10 Display "Enter the number of questions on the exam."
11 Input questions
12
13 // Prompt the user for the number of questions
14 // missed by the student.
15 Display "Enter the number of questions that the ",
16 "student missed."
17 Input missed
18
19 // Create a FinalExam object.
20 Set exam = New FinalExam(questions, missed)
21
22 // Display the test results.
23 Display "Each question on the exam counts ",
24 exam.getPointsEach(), " points."
25 Display "The exam score is ", exam.getScore()
26 Display "The exam grade is ", exam.getGrade()
27 End Module

Program Output (with Input Shown in Bold)

Enter the number of questions on the exam.
20 [Enter]
Enter the number of questions that the student missed.
3 [Enter]
Each question on the exam counts 5 points.
The exam score is 85
The exam grade is B

In line 20, the following statement creates an instance of the FinalExam class and
assigns its address to the exam variable:

Set exam = New FinalExam(questions, missed)

When a FinalExam object is created in memory, not only does it have the members
declared in the FinalExam class, but also it has the non-private members declared in
the GradedActivity class. Notice in lines 25 and 26, shown here, that two public
methods of the GradedActivity class, getScore and getGrade, are directly called
with the exam object:

Display "The exam score is ", exam.getScore()
Display "The exam grade is ", exam.getGrade()

When a subclass extends a superclass, the public members of the superclass become
public members of the subclass. In this program, the getScore and getGrade methods
can be called with the exam object because they are public members of the object’s
superclass.

554 Chapter 14 Object-Oriented Programming

Inheritance in UML Diagrams
You show inheritance in a UML diagram by connecting two classes with a line that has
an open arrowhead at one end. The arrowhead points to the superclass. Figure 14-20
is a UML diagram showing the relationship between the GradedActivity and
FinalExam classes.

FinalExam

– numQuestions : Integer
– pointsEach : Real
– numMissed : Integer

+ FinalExam(questions : Integer,
 missed : Integer)
+ getPointsEach() : Real
+ getNumMissed() : Integer

– score : Real

+ setScore(s : Real)
+ getScore() : Real
+ getGrade() : String

GradedActivity

Figure 14-20 UML diagram showing inheritance

Inheritance Does Not Work in Reverse
In an inheritance relationship, the subclass inherits members from the superclass, not
the other way around. This means it is not possible for a superclass to call a subclass’s
methods. For example, if we create a GradedActivity object, it cannot call the
getPointsEach or the getNumMissed methods because they are members of the
FinalExam class.

Checkpoint

14.21 In this section, we discussed superclasses and subclasses. Which is the general
class and which is the specialized class?

14.22 What does it mean to say there is an “is a” relationship between two objects?

14.23 What does a subclass inherit from its superclass?

14.24 Look at the following pseudocode, which is the first line of a class definition.
What is the name of the superclass? What is the name of the subclass?
Class Canary Extends Bird

14.6 Polymorphism 555

14.6 Polymorphism

CONCEPT: Polymorphism allows you to create methods with the same name in
different classes (that are related through inheritance) and gives you
the ability to call the correct method depending on the type of object
that is used to call it.

The term polymorphism refers to an object’s ability to take different forms. It is a
powerful feature of object-oriented programming. In this section, we will look at two
essential ingredients of polymorphic behavior:

1. The ability to define a method in a superclass, and then define a method with the
same name in a subclass. When a subclass method has the same name as a super-
class method, it is often said that the subclass method overrides the superclass
method.

2. The ability to declare a class variable of the superclass type, and then use that
variable to reference objects of either the superclass or the subclass types.

The best way to describe polymorphism is to demonstrate it, so let’s look at a simple
example. Class Listing 14-10 shows pseudocode for a class named Animal.

Class Listing 14-10

1 Class Animal
2 // showSpecies method
3 Public Module showSpecies()
4 Display "I'm just a regular animal."
5 End Module
6
7 // makeSound method
8 Public Module makeSound()
9 Display "Grrrrr"
10 End Module
11 End Class

The class has two methods: showSpecies and makeSound. Here is an example of
pseudocode that creates an instance of the class and calls the methods:

Declare Animal myAnimal
Set myAnimal = New Animal()
Call myAnimal.showSpecies()
Call myAnimal.makeSound()

If this were actual code, it would display the following:

I'm just a regular animal.
Grrrrr

Next, look at Class Listing 14-11, which shows the pseudocode for the Dog class. The
Dog class is a subclass of the Animal class.

556 Chapter 14 Object-Oriented Programming

Class Listing 14-11

1 Class Dog Extends Animal
2 // showSpecies method
3 Public Module showSpecies()
4 Display "I'm a dog."
5 End Module
6
7 // makeSound method
8 Public Module makeSound()
9 Display "Woof! Woof!"
10 End Module
11 End Class

Even though the Dog class inherits the showSpecies and makeSound methods that are
in the Animal class, those methods are not adequate for the Dog class. So, the Dog class
has its own showSpecies and makeSound methods, which display messages that are
more appropriate for a dog. We say that the showSpecies and makeSound methods in
the Dog class override the showSpecies and makeSound methods in the Animal class.
Here is an example of pseudocode that creates an instance of the Dog class and calls the
methods:

Declare Dog myDog
Set myDog = New Dog()
Call myDog.showSpecies()
Call myDog.makeSound()

If this were actual code, it would display the following:

I'm a dog.
Woof! Woof!

Class Listing 14-12 shows pseudocode for the Cat class, which is also a subclass of the
Animal class.

Class Listing 14-12

1 Class Cat Extends Animal
2 // showSpecies method
3 Public Module showSpecies()
4 Display "I'm a cat."
5 End Module
6
7 // makeSound method
8 Public Module makeSound()
9 Display "Meow"
10 End Module
11 End Class

The Cat class also has methods named showSpecies and makeSound. Here is
an example of pseudocode that creates an instance of the Cat class and calls the
methods:

14.6 Polymorphism 557

Declare Cat myCat
Set myCat = New Cat()
Call myCat.showSpecies()
Call myCat.makeSound()

If this were actual code, it would display the following:

I'm a cat.
Meow

Because of the “is a” relationship between a superclass and a subclass, an object of the
Dog class is not just a Dog object. It is also an Animal object. (A dog is an animal.)
Because of this relationship, we can use an Animal class variable to reference a Dog ob-
ject. For example, look at the following pseudocode:

Declare Animal myAnimal
Set myAnimal = New Dog()
Call myAnimal.showSpecies()
Call myAnimal.makeSound()

The first statement declares myAnimal as an Animal variable. The second statement
creates a Dog object and stores the object’s address in the myAnimal variable. In most
object-oriented languages this type of assignment is perfectly legal because a Dog object
is also an Animal object. The third and fourth statements use the myAnimal object to
call the showSpecies and makeSound methods. If this pseudocode were actual code, it
would display the following in most programming languages:

I'm a dog.
Woof! Woof!

Similarly, we can use an Animal variable to reference a Cat object, as shown here:

Declare Animal myAnimal
Set myAnimal = New Cat()
Call myAnimal.showSpecies()
Call myAnimal.makeSound()

If this pseudocode were actual code, it would display the following in most program-
ming languages:

I'm a cat.
Meow

This aspect of polymorphism gives us a great deal of flexibility when designing pro-
grams. For example, look at the following module:

Module showAnimalInfo(Animal creature)
Call creature.showSpecies()
Call creature.makeSound()

End Module

This module displays information about an animal. Because it has an Animal variable
as its parameter, you can pass an Animal object to the module when you call it. The
module then calls the object’s showSpecies method and makeSound method.

The showAnimalInfo module works with an Animal object, but what if you also
need modules that display information about Dog objects and Cat objects? Do you
need to write additional modules for each of these types? Because of polymorphism,
the answer is no. In addition to Animal objects, you can also pass Dog objects or Cat

558 Chapter 14 Object-Oriented Programming

objects as arguments to the showAnimalInfo module previously shown. The
pseudocode in Program 14-6 demonstrates this.

Program 14-6

1 Module main()
2 // Declare three class variables.
3 Declare Animal myAnimal
4 Declare Dog myDog
5 Declare Cat myCat
6
7 // Create an Animal object, a Dog object,
8 // and a Cat object.
9 Set myAnimal = New Animal()
10 Set myDog = New Dog()
11 Set myCat = New Cat()
12
13 // Show info about an animal.
14 Display "Here is info about an animal."
15 showAnimalInfo(myAnimal)
16 Display
17
18 // Show info about a dog.
19 Display "Here is info about a dog."
20 showAnimalInfo(myDog)
21 Display
22
23 // Show info about a cat.
24 Display "Here is info about a cat."
25 showAnimalInfo(myCat)
26 End Module
27
28 // The showAnimalInfo module accepts an Animal
29 // object as an argument and displays information
30 // about it.
31 Module showAnimalInfo(Animal creature)
32 Call creature.showSpecies()
33 Call creature.makeSound()
34 End Module

Program Output

Here is info about an animal.
I'm just a regular animal.
Grrrrr

Here is info about a dog.
I'm a dog.
Woof! Woof!

Here is info about a cat.
I'm a cat.
Meow

Review Questions 559

Although these examples are very simple, polymorphism has many practical uses. For
example, a university’s software processes a lot of data about students, so it might use
a Student class. One of the methods in the Student class might be called getFees.
This method would return the amount of a typical student’s fees for a semester.

In addition, the software might have a BiologyStudent class as a subclass of the
Student class (because a biology student is a student). Because of additional lab
charges, a biology student’s fees are usually more than those of the typical student. So,
the BiologyStudent class would have its own getFees method that returns the fees
for a biology student.

Checkpoint

14.25 Look at the following pseudocode class definitions:
Class Vegetable

Public Module message()
Display "I'm a vegetable."

End Module
End Class
Class Potato Extends Vegetable

Public Module message()
Display "I'm a potato."

End Module
End Class

Given these class definitions, what will the following pseudocode display?

Declare Vegetable v
Declare Potato p
Set v = New Potato()
Set p = New Potato()
Call v.message()
Call p.message()

Review Questions

Multiple Choice

1. A(n) __________ programming practice is centered on creating modules and functions
that are separate from the data that they work on.

a. modular
b. procedural
c. functional
d. object-oriented

2. A(n) __________ programming practice is centered on creating objects.

a. object-centric
b. objective
c. procedural
d. object-oriented

560 Chapter 14 Object-Oriented Programming

3. A(n) __________ is a member of a class that holds data.

a. method
b. instance
c. field
d. constructor

4. The __________ specifies how a class’s field or method may be accessed by code
outside the class.

a. field declaration
b. New key word
c. access specifier
d. constructor

5. A class’s fields are commonly declared with the __________ access specifier.

a. Private
b. Public
c. ReadOnly
d. Hidden

6. A __________ variable is a special type of variable that can reference an object in
the computer’s memory.

a. memory
b. procedural
c. class
d. dynamic

7. In many programming languages, the __________ key word creates an object in
memory.

a. Create
b. New
c. Instantiate
d. Declare

8. A(n) __________ method gets a value from a class’s field but does not change it.

a. retriever
b. constructor
c. mutator
d. accessor

9. A(n) __________ method stores a value in a field or changes the value of a field in
some other way.

a. modifier
b. constructor
c. mutator
d. accessor

10. A(n) __________ method is automatically called when an object is created.

a. accessor
b. constructor
c. setter
d. mutator

Review Questions 561

11. A set of standard diagrams for graphically depicting object-oriented systems is
provided by __________.

a. the Unified Modeling Language
b. flowcharts
c. pseudocode
d. the Object Hierarchy System

12. When the value of an item is dependent on other data, and that item is not updated
when the other data is changed, we say that the value has become __________.

a. bitter
b. stale
c. asynchronous
d. moldy

13. A class’s responsibilities are __________.

a. objects created from the class
b. things the class knows
c. actions the class performs
d. both b and c

14. In an inheritance relationship, the __________ is the general class.

a. subclass
b. superclass
c. slave class
d. child class

15. In an inheritance relationship, the __________ is the specialized class.

a. superclass
b. master class
c. subclass
d. parent class

16. The __________ characteristic of object-oriented programming allows a superclass
variable to reference a subclass object.

a. polymorphism
b. inheritance
c. generalization
d. specialization

True or False

1. The practice of procedural programming is centered on the creation of objects.

2. Object reusability has been a factor in the increased use of object-oriented pro-
gramming.

3. It is a common practice in object-oriented programming to make all of a class’s
fields public.

4. One way to find the classes needed for an object-oriented program is to identify all
of the verbs in a description of the problem domain.

5. The superclass inherits fields and methods from the subclass.

562 Chapter 14 Object-Oriented Programming

6. Polymorphism allows a class variable of the superclass type to reference objects of
either the superclass or the subclass types.

Short Answer

1. What is encapsulation?

2. Why is an object’s internal data usually hidden from outside code?

3. What is the difference between a class and an instance of a class?

4. In many programming languages, what does the New key word do?

5. The following pseudocode statement calls an object’s method. What is the name of
the method? What is the name of the variable that references the object?
Call wallet.getDollar()

6. What is stale data?

7. What does a subclass inherit from its superclass?

8. Look at the following pseudocode, which is the first line of a class definition.
What is the name of the superclass? What is the name of the subclass?
Class Tiger Extends Felis

Algorithm Workbench

1. Suppose myCar is the name of a class variable that references an object, and go is
the name of a method. (The go method does not take any arguments.) Write a
pseudocode statement that uses the myCar variable to call the method.

2. Look at this partial class definition, and then follow the subsequent instructions:

Class Book
Private String title
Private String author
Private String publisher
Private Integer copiesSold

End Class

a. Write a constructor for this class. The constructor should accept an argument
for each of the fields.

b. Write accessor and mutator methods for each field.
c. Draw a UML diagram for the class, including the methods you have written.

3. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings accounts,
checking accounts, and money market accounts. Customers are allowed to deposit
money into an account (thereby increasing its balance), withdraw money from an
account (thereby decreasing its balance), and earn interest on the account. Each
account has an interest rate.

Assume that you are writing a program that will calculate the amount of interest
earned for a bank account.

a. Identify the potential classes in this problem domain.
b. Refine the list to include only the necessary class or classes for this problem.
c. Identify the responsibilities of the class or classes.

4. In pseudocode, write the first line of the definition for a Poodle class. The class
should extend the Dog class.

Programming Exercises 563

5. Look at the following pseudocode class definitions:

Class Plant
Public Module message()

Display "I'm a plant."
End Module

End Class
Class Tree Extends Plant

Public Module message()
Display "I'm a tree."

End Module
End Class

Given these class definitions, what will the following pseudocode display?
Declare Plant p
Set p = New Tree()
Call p.message()

Programming Exercises
1. Pet Class

Design a class named Pet, which should have the following fields:
● name: The name field holds the name of a pet.
● type: The type field holds the type of animal that a pet is. Example values are

"Dog", "Cat", and "Bird".
● age: The age field holds the pet’s age.

The Pet class should also have the following methods:
● setName: The setName method stores a value in the name field.
● setType: The setType method stores a value in the type field.
● setAge: The setAge method stores a value in the age field.
● getName: The getName method returns the value of the name field.
● getType: The getType method returns the value of the type field.
● getAge: The getAge method returns the value of the age field.

Once you have designed the class, design a program that creates an object of the
class and prompts the user to enter the name, type, and age of his or her pet. This
data should be stored in the object. Use the object’s accessor methods to retrieve
the pet’s name, type, and age and display this data on the screen.

2. Car Class

Design a class named Car that has the following fields:
● yearModel: The yearModel field is an Integer that holds the car’s year model.
● make: The make field references a String that holds the make of the car.
● speed: The speed field is an Integer that holds the car’s current speed.

In addition, the class should have the following constructor and other methods:
● Constructor: The constructor should accept the car’s year model and make as

arguments. These values should be assigned to the object’s yearModel and make
fields. The constructor should also assign 0 to the speed field.

● Accessors: Design appropriate accessor methods to get the values stored in an
object’s yearModel, make, and speed fields.

● accelerate: The accelerate method should add 5 to the speed field each
time it is called.

The Pet Class
Problem

VideoNote

564 Chapter 14 Object-Oriented Programming

● brake: The brake method should subtract 5 from the speed field each time it is
called.

Next, design a program that creates a Car object, and then calls the accelerate
method five times. After each call to the accelerate method, get the current
speed of the car and display it. Then call the brake method five times. After each
call to the brake method, get the current speed of the car and display it.

3. Personal Information Class

Design a class that holds the following personal data: name, address, age, and
phone number. Write appropriate accessor and mutator methods. Also, design a
program that creates three instances of the class. One instance should hold your
information, and the other two should hold your friends’ or family members’
information.

4. Employee and ProductionWorker Classes

Design an Employee class that has fields for the following pieces of information:
● Employee name
● Employee number

Next, design a class named ProductionWorker that extends the Employee class.
The ProductionWorker class should have fields to hold the following information:
● Shift number (an integer, such as 1, 2, or 3)
● Hourly pay rate

The workday is divided into two shifts: day and night. The shift field will hold an
integer value representing the shift that the employee works. The day shift is shift 1
and the night shift is shift 2. Design the appropriate accessor and mutator methods
for each class.

Once you have designed the classes, design a program that creates an object of the
ProductionWorker class and prompts the user to enter data for each of the ob-
ject’s fields. Store the data in the object and then use the object’s accessor methods
to retrieve it and display it on the screen.

5. Essay Class

Design an Essay class that extends the GradedActivity class presented in this
chapter. The Essay class should determine the grade a student receives for an
essay. The student’s essay score can be up to 100 and is determined in the follow-
ing manner:
● Grammar: up to 30 points
● Spelling: up to 20 points
● Correct length: up to 20 points
● Content: up to 30 points

Once you have designed the class, design a program that prompts the user to
enter the number of points that a student has earned for grammar, spelling,
length, and content. Create an Essay object and store this data in the object. Use
the object’s methods to get the student’s overall score and grade, and display this
data on the screen.

TOPICS

15.1 Graphical User Interfaces

15.2 Designing the User Interface for a GUI
Program

15.3 Writing Event Handlers

GUI Applications and
Event-Driven Programming

15.1 Graphical User Interfaces

CONCEPT: A graphical user interface allows the user to interact with the operating
system and other programs using graphical elements such as icons, but-
tons, and dialog boxes.

A computer’s user interface is the part of the computer that the user interacts with. One
part of the user interface consists of hardware devices, such as the keyboard and the
video display. Another part of the user interface lies in the way that the computer’s op-
erating system accepts commands from the user. For many years, the only way that the
user could interact with an operating system was through a command line interface,
such as the one shown in Figure 15-1. A command line interface typically displays a
prompt, and the user types a command, which is then executed.

Many computer users, especially beginners, find command line interfaces difficult to
use. This is because there are many commands to be learned, and each command has
its own syntax, much like a programming statement. If a command isn’t entered cor-
rectly, it will not work.

C
H

A
P

T
E

R

15

565

Graphical User
Interfaces

VideoNote

566 Chapter 15 GUI Applications and Event-Driven Programming

Figure 15-1 A command line interface

In the 1980s, a new type of interface known as a graphical user interface came into use
in commercial operating systems. A graphical user interface (GUI) (pronounced
“gooey”) allows the user to interact with the operating system through graphical ele-
ments on the screen. GUIs also popularized the use of the mouse as an input device.
Instead of requiring the user to type commands on the keyboard, GUIs allow the user
to point at graphical elements and click the mouse button to activate them.

Much of the interaction with a GUI is done through dialog boxes, which are small win-
dows that display information and allow the user to perform actions. Figure 15-2
shows an example of a dialog box that allows the user to change his or her Internet set-
tings in the Windows operating system. Instead of typing cryptic commands, the user
interacts with graphical elements such as icons, buttons, and slider bars.

Figure 15-2 A dialog box

15.1 Graphical User Interfaces 567

If you are developing software in an operating system that uses a GUI, such as Win-
dows, Mac OS X, or Linux, you can also use the GUI in the programs that you write.
This allows you to incorporate standard GUI elements such as dialog boxes with icons,
buttons, and so on into your programs.

GUI Programs Are Event-Driven
In a text-based environment, such as a command line interface, programs determine
the order in which things happen. For example, consider a program that calculates the
area of a rectangle. First, the program prompts the user to enter the rectangle’s width.
The user enters the width and then the program prompts the user to enter the rectan-
gle’s length. The user enters the length and then the program calculates the area. The
user has no choice but to enter the data in the order that it is requested.

In a GUI environment, however, the user determines the order in which things happen.
For example, Figure 15-3 shows a GUI program that calculates the area of a rectangle.
The user can enter the length and the width in any order he or she wishes. If a mistake
is made, the user can erase the data that was entered and retype it. When the user is
ready to calculate the area, he or she clicks the Calculate Area button and the program
performs the calculation. Because GUI programs must respond to the actions of the
user, it is said that they are event-driven. The user causes events to take place, such as
the clicking of a button, and the program must respond to the events.

Figure 15-3 A GUI program

Creating a GUI Program
Many of the steps involved in creating a GUI program are the same as those that you
have used to create text-based programs throughout this book. For example, you must
understand the task that the program is to perform and determine the steps that must
be taken to perform the task.

In addition, you must design the on-screen GUI elements that make up each window in
the program’s user interface. You must also determine how the program will flow from
one window to the next as the user interacts with it. Some programmers find it helpful
to draw a user interface flow diagram. Figure 15-4 shows an example of such a dia-
gram. Each box represents a window that is displayed by the program. If actions per-
formed in one window can cause another window to open, then an arrow appears
between the two windows in the diagram. In the diagram, notice that an arrow points
away from Window 1 to Window 2. This means that actions in Window 1 can cause

568 Chapter 15 GUI Applications and Event-Driven Programming

Window 3

Window 4 Window 5

Window 6

Window 1
(Startup Window)

Window 2

Figure 15-4 A user interface flow diagram

Window 2 to open. When a double-headed arrow appears between two windows, then
either window can open the other.

Checkpoint

15.1 What is a user interface?

15.2 How does a command line interface work?

15.3 When the user runs a program in a text-based environment, such as the com-
mand line, what determines the order in which things happen?

15.4 What is an event-driven program?

15.5 What is a user interface flow diagram?

15.2 Designing the User Interface
for a GUI Program

CONCEPT: When creating a GUI program you must design the program’s windows
and all of the graphical components that appear in them.

A GUI program’s user interface consists of one or more windows that appear on the
screen when the program is running. While creating a GUI program, one of your tasks
is to design the windows and all of the graphical elements that appear in them.

15.2 Designing the User Interface for a GUI Program 569

In the early days of GUI programming, creating a set of graphical windows for a
program was a complex and time-consuming endeavor. Programmers had to write
code that constructed the windows, create graphical elements such as icons and but-
tons, and set each element’s color, position, size, and other properties. Even a simple
GUI program that displayed a message such as “Hello world” required the pro-
grammer to write a hundred or more lines of code. Furthermore, the programmer
could not actually see the program’s user interface until the program was compiled
and executed.

Today, there are several integrated development environments (IDEs) that allow you to
construct a program’s windows and its graphical elements visually without writing a
single line of code. For example, Microsoft Visual Studio allows you to create GUI pro-
grams using the Visual Basic, C++, and C# programming languages. Sun Microsystem’s
NetBeans and Embarcadero® JBuilder® are popular IDEs for creating GUI programs in
Java. There are several other IDEs as well.

Most IDEs display a window editor that allows you to create windows, and a “tool-
box” that displays all of the items that you can place in a window. You construct a
window by dragging the desired items from the toolbox to the window editor. This
is shown in Figures 15-5 and 15-6. The screen in Figure 15-5 is from Visual Basic,
and the screen in Figure 15-6 is from NetBeans. As you visually construct the user
interface in the window editor, the IDE automatically generates the code needed to
display it.

Figure 15-5 Visually constructing a window in Visual Basic

570 Chapter 15 GUI Applications and Event-Driven Programming

Figure 15-6 Visually constructing a window in NetBeans

Label

Text box

List box

Check box

Combo box

Slider

Buttons

Radio button

Figure 15-7 Various components in a GUI window

Components
The items that appear in a program’s graphical user interface are known as
components. Some of the common GUI components are buttons, labels, text boxes,
check boxes, and radio buttons. Figure 15-7 shows an example of a window with a va-
riety of components. Table 15-1 describes the components that appear in the window.

15.2 Designing the User Interface for a GUI Program 571

Table 15-1 Common GUI components

Component Description

Button A component that causes an action to occur when it is clicked

Label An area that can display text

Text box An area in which the user may type a single line of input from the keyboard

Check box A component that has a box that may be checked or unchecked

Radio button A component that can be either selected or deselected; usually appears in
groups and allows the user to select one of several options

Combo box A component (combination of a list and a text box) that displays a drop-
down list of items from which the user may select; provides a text box in
which the user may type input

List box A list from which the user may select an item

Slider A component that allows the user to select a value by moving a slider along
a track

calcButton exitButton

hoursTextBox

payRateTextBox

hoursLabel

payRateLabel

resultLabel grossPayLabel

Figure 15-8 Components and their names

Component Names
In most IDEs, you must assign unique names to the components that you place in a
window. A component’s name identifies the component in the program, in the same
way that a variable’s name identifies the variable. For example, Figure 15-8 shows a
window from a program that calculates gross pay. The figure also shows the names
that the programmer assigned to each component in the window. Notice that each
component’s name describes the component’s purpose in the program. For example,
the text box that the user enters the number of hours worked into is named
hoursTextBox, and the button that calculates the gross pay is named calcButton.
Additionally, in most programming languages, the rules for naming components are
the same as the rules for naming variables.

NOTE: GUI components are also known as controls and widgets.

572 Chapter 15 GUI Applications and Event-Driven Programming

Figure 15-9 A button with its Text property set to “Show Result”

Properties
Most GUI components have a set of properties that determines how the component ap-
pears on the screen. Typically, components have properties that specify the component’s
color, size, and position. Like variables, properties can be set to values. When you set a
property to a value, it changes some aspect of the component that it belongs to.

Let’s look at an example from Visual Basic. Suppose you have placed a button in a win-
dow and you want to display the text “Show Result” on the button. In Visual Basic,
the Text property controls the text that is displayed on a component, so you change
the value of the button’s Text property to “Show Result.” This causes the text “Show
Result” to be displayed on the button, as shown in Figure 15-9.

NOTE: In most IDEs, if you look at the code that is generated to display a window,
you will see that each component in the window is an object, and the name that you
have assigned to the component is used as the name of the object.

Most components in Visual Basic also have a property named BackColor that specifies
the component’s color, and another property named ForeColor that specifies the color
of any text that is displayed on the component. For example, if you want to change the
color of the text that is displayed on a button to blue, you set its ForeColor property
to the value Blue.

Most IDEs allow you to set a component’s properties while you are constructing the
window. Typically, IDEs provide a property window that displays all of a component’s
properties, and allows you to change the properties to the desired values.

Constructing a Window—A Summary
Now that you have an idea of how GUI windows are created in an IDE, let’s look at a
simple set of steps that you can follow to construct a window.

1. Sketch the window.

You should draw a sketch of the window before you start constructing it in the
IDE. By doing this you will determine the components that are needed. At this
point, it is often helpful to make a list of the necessary components.

2. Create the necessary components and name them.

After sketching the window and determining the components you will need, you
can start constructing it in the IDE. As you place each component in the window,
you should assign it a unique and meaningful name.

15.2 Designing the User Interface for a GUI Program 573

3. Set the components’ properties to the desired values.

A component’s properties control its visual characteristics, such as color, size, po-
sition, and any text that is displayed on the component. To get the visual appear-
ance that you want, set each component’s properties to the desired values. In most
IDEs, you will use a property window to set the starting values for the properties
of each component.

In the Spotlight:
Designing a Window
Kathryn teaches a science class. In Chapter 4, we stepped through the development of
a program that her students can use to calculate the average of three test scores. The
program prompts the student to enter each score, and then it displays the average. She
has asked you to design a GUI program that performs a similar operation. She would
like the program to have three text boxes that the test scores can be entered into, and a
button that causes the average to be displayed when clicked.

First, we need to draw a sketch of the program’s window, as shown in Figure 15-10.
The sketch also shows the type of each component. (The numbers that appear in the
sketch will help us when we make a list of all the components.)

1

2

3

4

Enter the score for test 1:

Enter the score for test 2:

Enter the score for test 3:

Average

Calculate
Average

Exit

Text box

Text box

Text box

Button Button

Label

Label

Label

Label

Label

5

6

7

8

109

Figure 15-10 A sketch of the window

By examining the sketch we can make a list of all the components that we need. As we
make the list, we will include a brief description of each component and a name that
we will assign to each component when we construct it.

574 Chapter 15 GUI Applications and Event-Driven Programming

Component
Number in
the Sketch

Component
Type Description Name

1 Label Instructs the user to enter the score for test 1. test1Label

2 Label Instructs the user to enter the score for test 2. test2Label

3 Label Instructs the user to enter the score for test 3. test3Label

4 Label Identifies the average, which will be dis-
played next to this label.

resultLabel

5 Text box This is where the user will enter the score
for test 1.

test1TextBox

6 Text box This is where the user will enter the score
for test 2.

test2TextBox

7 Text box This is where the user will enter the score
for test 3.

test3TextBox

8 Label The program will display the average test
score in this label.

averageLabel

9 Button When this button is clicked, the program
will calculate the average test score and
display it in the averageLabel component.

calcButton

10 Button When this button is clicked the program
will end.

exitButton

Now that we have a sketch of the window and a list of the components we will need,
we can use our IDE to construct it. As we place the components, we will set the appro-
priate properties to make the components look the way we want them to. Assuming we
are constructing the window in Visual Basic, we will set the following properties:

● The test1Label component’s Text property will be set to “Enter the score for
test 1:”

● The test2Label component’s Text property will be set to “Enter the score for
test 2:”

● The test3Label component’s Text property will be set to “Enter the score for
test 3:”

● The resultLabel component’s Text property will be set to “Average”
● The calcButton component’s Text property will be set to “Calculate Average”
● The exitButton component’s Text property will be set to “Exit”
● The averageLabel component’s BorderStyle property will be set to

FixedSingle. This will cause a thin border to appear around the label, as shown
in the sketch.

TIP : Although the properties listed here are specific to Visual Basic, other lan-
guages have similar properties. The names, however, may be different.

15.3 Writing Event Handlers 575

test1Label

test2Label

test3Label

resultLabel

test1TextBox

test2TextBox

test3TextBox

averageLabel

calcButton exitButton

Figure 15-11 The completed window

Checkpoint

15.6 Why was GUI programming complex and time consuming in the early days of
GUI technology?

15.7 In an IDE that allows you to visually construct a window, how do you place an
item such as a button in the window?

15.8 What is a component?

15.9 Why must components be assigned names?

15.10 What do a component’s properties do?

15.3 Writing Event Handlers

CONCEPT: If you want a GUI program to perform an action when an event occurs,
you must write code, known as an event handler, which responds to
that event.

After you create a GUI program’s user interface, you can write the code that re-
sponds to events. As previously mentioned, an event is an action that takes place
within a program, such as the clicking of a button. Part of writing a GUI application

Figure 15-11 shows an example of how the window will appear. The figure shows the
name of each component.

In the next In the Spotlight section we will continue developing this program by writ-
ing pseudocode that responds to the user’s actions.

576 Chapter 15 GUI Applications and Event-Driven Programming

is creating event handlers. An event handler is a module that automatically executes
when a specific event occurs. If you want a program to perform an operation when a
particular event occurs, you must create an event handler that responds when that
event takes place. In pseudocode, our event handlers will be written in the following
general format:

Module ComponentName_EventName()
The statements that appear here
are executed when the event occurs.

End Module

In the general format, ComponentName is the name of the component that generated
the event, and EventName is the name of the event that occurred. For example, sup-
pose a window contains a button component named showResultButton, and we
want to write an event handler that executes when the user clicks it. The event handler
would be written in the following format:

Module showResultButton_Click()
statement
statement
etc.

End Module

Predefined names are given to all of the events that can be generated in a GUI system.
In this example, you saw that a Click event occurs when the user clicks a component.
There are many other events that can be generated as well. For example, an event with
a name such as MouseEnter will be generated when the mouse cursor is moved over a
component, and an event with a name such as MouseLeave will be generated when the
mouse cursor is moved off of a component.

NOTE: If an event occurs and there is no event handler to respond to that event,
the event is ignored.

Let’s look at an example of how we can write an event handler in pseudocode. Previ-
ously in this chapter, you saw a GUI window for a program that calculates an em-
ployee’s gross pay. For your convenience the window is shown again, in Figure 15-12.
The figure also shows the names of the components.

calcButton exitButton

hoursTextBox

payRateTextBox

hoursLabel

payRateLabel

resultLabel grossPayLabel

Figure 15-12 A GUI window

15.3 Writing Event Handlers 577

When this program runs, there are two possible events that we want it to respond to:
the user clicking the calcButton component and the user clicking the exitButton
component. If the user clicks the calcButton component, we want the program to cal-
culate the gross pay and display it in the grossPayLabel component. If the user clicks
the exitButton component, we want the program to end.

To handle the event that occurs when the user clicks the calcButton, we would write
the following event handler in pseudocode:

1 Module calcButton_Click()
2 // Local variables to hold the hours worked, the
3 // pay rate, and the gross pay.
4 Declare Real hours, payRate, grossPay
5
6 // Get the number of hours worked from the
7 // hoursTextBox component.
8 Set hours = stringToReal(hoursTextBox.Text)
9
10 // Get the pay rate from the payRateTextBox
11 // component.
12 Set payRate = stringToReal(payRateTextBox.Text)
13
14 // Calculate the gross pay.
15 Set grossPay = hours * payRate
16
17 // Display the gross pay in the grossPayLabel
18 // component.
19 Set grossPayLabel.Text = realToString(grossPay)
20 End Module

Let’s take a closer look at each statement in this event handler.

● Line 4 declares three local variables: hours, payRate, and grossPay.
● Line 8 gets the value that has been typed into the hoursTextBox component and

assigns it to the hours variable. A lot of things are happening in this line, so it de-
serves a thorough explanation.

When the user types a value into a text box component, the value is stored in the
component’s Text property. In pseudocode, we use dot notation to refer to a
component’s Text property. For example, to refer to the hoursTextBox compo-
nent’s Text property, we write hoursTextBox.Text.

In many languages, you cannot assign the value of a component’s Text property
directly to a numeric variable. For example, if line 8 were written as follows, an
error would occur:

Set hours = hoursTextBox.Text

This logic will cause an error because the Text property holds strings, and strings
cannot be assigned to numeric variables. So, we need to convert the value in the
Text property to a real number. This can be done with the stringToReal func-
tion, as follows:

Set hours = stringToReal(hoursTextBox.Text)

(We discussed the stringToReal function in Chapter 6.)
● Line 12 gets the value that has been typed into the payRateTextBox component,

converts it to a real number, and assigns it to the payRate variable.

578 Chapter 15 GUI Applications and Event-Driven Programming

● Line 15 multiplies hours by payRate and assigns the result to the grossPay vari-
able.

● Line 19 displays the gross pay. It does this by assigning the value of the grossPay
variable to the grossPayLabel component’s Text property. Notice that a func-
tion, realToString, is used to convert the grossPay variable to a string. This is
necessary because in many languages an error will occur if we try to assign a
Real number directly to a Text property. When we assign a value to a label com-
ponent’s Text property, that value will be displayed in the label.

To handle the event that occurs when the user clicks the exitButton, we would write
the following event handler:

1 Module exitButton_Click()
2 Close
3 End Module

This event hander executes the Close statement. In pseudocode, the Close statement
causes the window that is currently open to close. If the current window is the only one
open, closing it causes the program to end.

In the Spotlight:
Designing an Event Handler
In the previous In the Spotlight section, we designed the window shown in Figure
15-13 for Kathryn’s test score averaging program.

test1Label

test2Label

test3Label

resultLabel

test1TextBox

test2TextBox

test3TextBox

averageLabel

calcButton exitButton

Figure 15-13 The window for the test score averaging program

Now, we will design the program’s event handlers. When the user clicks the
calcButton component, the program should calculate the average of the three test
scores and display it in the averageLabel component. When the user clicks the
exitButton component, the program should end. The pseudocode in Program 15-1
shows both event handlers.

15.3 Writing Event Handlers 579

Program 15-1

1 Module calcButton_Click()
2 // Declare local variables to hold the test
3 // scores and the average.
4 Declare Real test1, test2, test3, average
5
6 // Get the first test score.
7 Set test1 = stringToReal(test1TextBox.Text)
8
9 // Get the second test score.
10 Set test2 = stringToReal(test2TextBox.Text)
11
12 // Get the third test score.
13 Set test3 = stringToReal(test3TextBox.Text)
14
15 // Calculate the average test score.
16 Set average = (test1 + test2 + test3) / 3
17
18 // Display the average test score in the
19 // averageLabel component.
20 Set averageLabel.Text = realToString(average)
21 End Module
22
23 Module exitButton_Click()
24 Close
25 End Module

Here is a description of each statement in the calcButton_Click module:

● Line 4 declares local variables to hold the three test scores and the average of the
test scores.

● Line 7 gets the value that has been entered into the test1TextBox component,
converts it to a real number, and stores it in the test1 variable.

● Line 10 gets the value that has been entered into the test2TextBox component,
converts it to a real number, and stores it in the test2 variable.

● Line 13 gets the value that has been entered into the test3TextBox component,
converts it to a real number, and stores it in the test3 variable.

● Line 16 calculates the average of the three test scores and stores the result in the
average variable.

● Line 20 converts the value in the average variable to a string and stores it in the
averageLabel component’s Text property. Doing this displays the value in the
label component.

The exitButton_Click module executes the Close statement to close the window
and subsequently end the program.

Figure 15-14 shows an example of how the program’s window will appear after the
user has entered values into the text boxes and clicked the calcButton component.

580 Chapter 15 GUI Applications and Event-Driven Programming

Checkpoint

15.11 What is an event?

15.12 What is an event handler?

15.13 Look at the following pseudocode and then answer the questions that follow
it:

Module showValuesButton_Click()
statement
statement
etc.

End Module

a. What event does this module respond to?

b. What is the name of the component that generates the event?

Figure 15-14 The window with an average displayed

Review Questions

Multiple Choice

1. The __________ is the part of a computer with which the user interacts.

a. central processing unit
b. user interface
c. control system
d. interactivity system

2. Before GUIs became popular, the __________ interface was the most commonly
used.

a. command line
b. remote terminal
c. sensory
d. event-driven

Review Questions 581

3. A __________ is a small window that displays information and allows the user to
perform actions.

a. menu
b. confirmation window
c. startup screen
d. dialog box

4. A type of program that is typically event-driven is the __________ program.

a. command line
b. text-based
c. GUI
d. procedural

5. An item that appears in a program’s graphical user interface is known as a
__________.

a. gadget
b. component
c. tool
d. graphic object

6. By specifying characteristics such as color, size, and location, __________ deter-
mine how a GUI element appears on the screen.

a. properties
b. attributes
c. methods
d. event handlers

7. An __________ is an action that takes place within a program, such as the clicking
of a button.

a. event handler
b. anomaly
c. event
d. exception

8. A(n) __________ is a module that automatically executes when a specific event
occurs.

a. event handler
b. auto module
c. startup module
d. exception

True or False

1. Many computer users, especially beginners, find command line interfaces difficult
to use.

2. Writing a GUI program today is complex and time consuming because you have to
write all of the code that constructs the program’s windows without seeing it on
the screen.

3. A component’s Text property typically holds string values.

582 Chapter 15 GUI Applications and Event-Driven Programming

4. Predefined names are given to all of the events that can be generated in a GUI
system.

5. A user interface flow diagram shows how a GUI program flows from one window
to the next as the user interacts with it.

Short Answer

1. When a program runs in a text-based environment, such as a command line inter-
face, what determines the order in which things happen?

2. What determines how a component appears on the screen?

3. Describe how you typically change the color of a component.

4. Why must components be assigned names?

5. What happens if an event occurs and there is no event handler to respond to the
event?

Algorithm Workbench

1. Design an event handler that will execute when the showNameButton component
is clicked. The event handler should perform the following:
● Store your first name in a label component named firstNameLabel.
● Store your middle name in a label component named middleNameLabel.
● Store your last name in a label component named lastNameLabel.

(Remember, to store a value in a label component, you must store the value in the
component’s Text property.)

2. Design an event handler that will execute when the calcAvailableCreditButton
component is clicked. The event handler should perform the following:
● Declare the following Real variables: maxCredit, usedCredit, and

availableCredit.
● Get a value from a text box named maxCreditTextBox and assign it to the

maxCredit variable.
● Get a value from a text box named usedCreditTextBox and assign it to the

usedCredit variable.
● Subtract the value in usedCredit from maxCredit and assign the result to

availableCredit.
● Store the value in the availableCredit variable in a label component named

availableCreditLabel.

Programming Exercises
1. Name and Address

Design a GUI program that displays your name and address when a button is
clicked. The program’s window should appear as the sketch on the left side of
Figure 15-15 when it runs. When the user clicks the Show Info button, the pro-
gram should display your name and address, as shown in the sketch on the right
side of the figure.

The Name and
Address Problem

VideoNote

Programming Exercises 583

ExitShow Info ExitShow Info

Steven Marcus
274 Baily Drive

Waynesville, NC 27999

Figure 15-15 Name and address program

2. Latin Translator

Look at the following list of Latin words and their meanings:

Latin English
sinister left
dexter right
medium center

Design a GUI program that translates the Latin words to English. The window
should have three buttons, one for each Latin word. When the user clicks a button,
the program displays the English translation in a label component.

3. Miles-per-Gallon Calculator

Design a GUI program that calculates a car’s gas mileage. The program’s window
should have text boxes that let the user enter the number of gallons of gas the car
holds, and the number of miles it can be driven on a full tank. When a Calculate
MPG button is clicked, the program should display the number of miles that the
car may be driven per gallon of gas. Use the following formula to calculate miles-
per-gallon:

4. Celsius to Fahrenheit

Design a GUI program that converts Celsius temperatures to Fahrenheit tempera-
tures. The user should be able to enter a Celsius temperature, click a button, and
then see the equivalent Fahrenheit temperature. Use the following formula to make
the conversion:

F is the Fahrenheit temperature and C is the Celsius temperature.

5. Property Tax

A county collects property taxes on the assessment value of property, which is 60
percent of the property’s actual value. If an acre of land is valued at $10,000, its
assessment value is $6,000. The property tax is then $0.64 for each $100 of the
assessment value. The tax for the acre assessed at $6,000 will be $38.40. Design a
GUI program that displays the assessment value and property tax when a user
enters the actual value of a property.

F C= +9
5

32

MPG
Miles

Gallons
=

This page intentionally left blank

ASCII/Unicode CharactersA

585

A
P

P
E

N
D

IX

The following table lists the ASCII (American Standard Code for Information Interchange)
character set, which is the same as the first 127 Unicode character codes. This group of char-
acter codes is known as the Latin Subset of Unicode. The code columns show character
codes and the character columns show the corresponding characters. For example, the code
65 represents the letter A. Note that the first 31 codes and code 127 represent control char-
acters that are not printable.

0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 Backspace
9 HTab
10 Line Feed
11 VTab
12 Form Feed
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM

26 SUB
27 Escape
28 FS
29 GS
30 RS
31 US
32 (Space)
33 !
34 “
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3

52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M

78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g

104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 DEL

Code Character Code Character Code Character Code Character Code Character

This page intentionally left blank

Flowchart Symbols

A
P

P
E

N
D

IX

B

Case Structure

This page shows the flowchart symbols that are used in this book.

Terminal Symbols Input/Output Symbol Processing Symbol

Connector Module Call Symbol Decision Symbol

1 2 3 Default

A

End

Start

587

This page intentionally left blank

C

589

Pseudocode Reference

A
P

P
E

N
D

IX

This appendix serves as a quick reference for the pseudocode that is used in this book. This
reference concisely covers the book’s statements and operators. (It does not cover the library
functions, however. See the index to locate a specific library function in the main text.)

Variables
To declare a variable, you use the Declare statement. Here is the general format:

Declare DataType VariableName

In the general format, DataType is the variable’s data type and VariableName is the vari-
able’s name. Here are some examples:

Declare Integer distance
Declare Real grossPay
Declare String name
Declare Character letter

You can optionally initialize a variable with a starting value when you declare it. Here is an
example:

Declare Real price = 49.95

Named Constants
You create a named constant by using the Constant statement instead of the Declare state-
ment. Here is the general format:

Constant DataType Name = Value

In the general format, DataType is the constant’s data type, Name is the constant’s name, and
Value is the contstant’s value. Here is an example:

Constant Real INTEREST_RATE = 0.072

Data Types Description

Integer Used for variables that will store whole numbers
Real Used for variables that will store numbers with a fractional part
String Used for variables that will store strings
Character Used for variables that will store a single character

590 Appendix C Pseudocode Reference

Arrays
Here is the general format of an array declaration:

Declare DataType ArrayName[Size]

In the general format, DataType is the array’s data type, ArrayName is the array’s
name, and Size is the number of elements in the array. Here is an example:

Declare Integer units[10]

This statement declares an array of Integer values. The array’s name is units, and it
has 10 elements.

Two-Dimensional Arrays
Here is the general format of a two-dimensional array declaration:

Declare DataType ArrayName[Rows][Cols]

In the general format, DataType is the array’s data type, ArrayName is the array’s
name, Rows is the number of rows in the array, and Cols is the number of columns.
Here is an example:

Declare Integer values[10][20]

This statement declares an array of Integer values. The array’s name is values, and it
has 10 rows and 20 columns.

Displaying Output
To display output you use the Display statement. The Display statement displays a
line of output on the screen. Here is the general format to use when you are displaying
one item of data:

Display Item

To display multiple items, you separate the items with commas, as shown in the follow-
ing general format:

Display Item, Item, Item ...

Here are some examples:

Display "Hello world"
Display grossPay
Display "My name is ", name

You can use the word Tab to indent screen output to the next tab position. Here is an
example:

Display amount1, Tab, amount2, Tab, amount3

Reading Input
You use the Input statement to read keyboard input. Here is the general format:

Input VariableName

In the general format, VariableName is the name of the variable that will receive the input.
Here is an example:

Input hours

Appendix C Pseudocode Reference 591

Comments
In this book, we begin a comment with two forward slashes. Everything appearing on
the line after the slashes is a comment. Here is an example:

// Get the number of hours worked.

Math Operators

Relational Operators

Logical Operators

Symbol Operator Description

+ Addition Adds two numbers
- Subtraction Subtracts one number from another
* Multiplication Multiplies one number by another
/ Division Divides one number by another and gives the quotient
MOD Modulus Divides one number by another and gives the remainder
^ Exponent Raises a number to a power

Operator Meaning

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to

Operator Meaning

AND The AND operator connects two Boolean expressions into one compound
expression. Both subexpressions must be true for the compound expres-
sion to be true.

OR The OR operator connects two Boolean expressions into one compound
expression. One or both subexpressions must be true for the compound
expression to be true. It is only necessary for one of the subexpressions to
be true, and it does not matter which.

NOT The NOT operator is a unary operator, meaning it works with only one
operand. The operand must be a Boolean expression. The NOT operator
reverses the truth of its operand. If it is applied to an expression that is
true, the operator returns false. If it is applied to an expression that is false,
the operator returns true.

592 Appendix C Pseudocode Reference

The If-Then Statement
General format:

If condition Then
statement
statement
etc.

End If

In the general format, the condition is a Boolean expression. If the expression is true,
the statements appearing between the If clause and the End If clause are executed.
Otherwise, the statements are skipped. Here is an example:

If sales > 50000 Then
Set bonus = 500.0
Set commissionRate = 0.12
Display "You've met your sales quota!"

End If

The If-Then-Else Statement
General format:

If condition Then
statement
statement
etc.

Else
statement
statement
etc.

End If

In the general format, the condition is a Boolean expression. If the expression is true,
the statements appearing between the If clause and the Else clause are executed. Oth-
erwise, the statements between the Else clause and the End If clause are executed.
Here is an example:

If temperature < 40 Then
Display "A little cold, isn't it?"

Else
Display "Nice weather we're having."

End If

The Select Case Statement
General format:

Select testExpression This is a variable or an expression.
Case value_1:

statement
statement
etc.

These statements are executed if the
condition is true.

⎫
⎬
⎭

These statements are executed if the
condition is false.

⎫
⎬
⎭

These statements are executed if the
testExpression is equal to value_1.

⎫
⎬
⎭

These statements are conditionally
executed.

⎫
⎬
⎭

These statements are executed if the
testExpression is equal to value_2.

These statements are executed if the
testExpression is equal to value_N.

⎫
⎬
⎭

⎫
⎬
⎭

Case value_2:
statement
statement
etc.

Insert as many Case sections as necessary

Case value_N:
statement
statement
etc.

Default:
statement
statement
etc.

End Select This is the end of the structure.

The first line of the structure starts with the word Select, followed by a
testExpression. Inside the structure there is one or more blocks of statements that be-
gin with a Case statement. Notice that the word Case is followed by a value.

When the Select Case statement executes, it compares the value of the
testExpression with the values that follow each of the Case statements (from top to
bottom). When it finds a Case value that matches the testExpression’s value, the pro-
gram branches to the Case statement. The statements that immediately follow the Case
statement are executed, and then the program jumps out of the structure. If the
testExpression does not match any of the Case values, the program branches to the
Default statement and executes the statements that immediately follow it. Here is an
example:

Select month
Case 1:

Display "January"
Case 2:

Display "February"
Case 3:

Display "March"
Default:

Display "Error: Invalid month"
End Select

The While Loop
General format:

While condition
statement
statement
etc.

End While

In the general format, the condition is a Boolean expression, and the statements that
appear on the lines between the While and the End While clauses are the body of the
loop. When the loop executes, the condition is tested. If it is true, the statements that
appear in the body of the loop are executed, and then the loop starts over. If the

These statements are executed if the testExpression
is not equal to any of the values listed after the Case

statements.

⎫
⎬
⎭

⎫
⎬ These statements are the body of the loop. They are

⎭ repeated while the condition is true.

Appendix C Pseudocode Reference 593

594 Appendix C Pseudocode Reference

condition is false, the program exits the loop. The following pseudocode shows an ex-
ample:

Set count = 0
While count < 10

Display count
Set count = count + 1

End While

These statements are the body of the loop. They are always
performed once, and then repeated while the condition is true.

These statements are the body of the loop. They are always
performed once, and then repeated until the condition is true.

The Do-While Loop
General format:

Do
statement
statement
etc.

While condition

In the general format, the statements that appear in the lines between the Do and the
While clauses are the body of the loop. The condition that appears after the While
clause is a Boolean expression. When the loop executes, the statements in the body of
the loop are executed, and then the condition is tested. If the condition is true, the loop
starts over and the statements in the body are executed again. If the condition is false,
however, the program exits the loop. Here is an example:

Set count = 10
Do

Display count
Set count = count - 1

While count > 0

The Do-Until Loop
General format:

Do
statement
statement
etc.

Until condition

In the general format, the statements that appear in the lines between the Do and the
Until clauses are the body of the loop. The condition that appears after the While
clause is a Boolean expression. When the loop executes, the statements in the body of
the loop are executed, and then the condition is tested. If the condition is true, the pro-
gram exits the loop. If the condition is false, the loop starts over and the statements in
the body are executed again. Here is an example:

Set count = 10
Do

Display count
Set count = count - 1

Until count == 0

⎫
⎬
⎭

⎫
⎬
⎭

The For Loop
General format:

For counterVariable = startingValue To maxValue
statement
statement
statement
etc.

End For

In the general format, counterVariable is the name of a variable that is used as a
counter, startingValue is the value that the counter will be initially set to, and
maxValue is the maximum value that the counter can contain. When the loop executes,
the following actions are performed:

1. The counterVariable is set to the startingValue.
2. The counterVariable is compared to the maxValue. If the counterVariable is

greater than maxValue, the loop stops. Otherwise:
a. The statements that appear in the body of the loop are executed.
b. The counterVariable is incremented.
c. The loop starts over again at step 2.

Here is an example:
For counter = 1 To 10

Display "Hello world"
End For

The For Each Loop
General format:

For Each var In array
statement
statement
statement
etc.

End For

In the general format, var is the name of a variable and array is the name of an array.
The loop will iterate once for every element in the array. Each time the loop iterates, it
copies an array element to the var variable. For example, the first time the loop iterates,
var will contain the value of array[0], the second time the loop iterates var will contain
the value of array[1], and so forth. This continues until the loop has stepped through
all of the elements in the array. The following pseudocode shows an example:

Constant Integer SIZE = 5
Declare Integer numbers[SIZE] = 5, 10, 15, 20, 25
Declare Integer num
For Each num In numbers

Display num
End For

⎫
⎬ These statements are the body of the loop.
⎪
⎭

Appendix C Pseudocode Reference 595

596 Appendix C Pseudocode Reference

Defining a Module
To create a module you write its definition, which has two parts: a header and a body.
The header indicates the starting point of the module, and the body is a list of state-
ments that belong to the module. Here is the general format used in this book to write
a module definition in pseudocode:

Module name()
statement
statement
etc.

End Module

Calling a Module
To call a module you use the Call statement. Here is the general format:

Call ModuleName()

In the general format, ModuleName is the name of the module being called. In the fol-
lowing example, a module named showMessage is being called:

Call showMessage()

Parameter Variables
If you want a module or function to receive arguments when it is called, you must
equip the module or function with one or more parameter variables. Parameter vari-
ables are declared inside the parentheses of the module definition. Here is an example
of a pseudocode module that has an Integer parameter variable:

Module doubleNumber(Integer value)
Declare Integer result
Set result = value * 2
Display result

End Module

When this module is called, an Integer argument will be passed to it by value. To pass
an argument by reference, the word Ref is used in the parameter variable declaration,
and shown here:

Module setToZero(Integer Ref value)
value = 0

End Module

Defining a Function
A function definition is similar to a module definition. Here is the general format:

Function DataType FunctionName(ParameterList)
statement
statement
etc.
Return value

End Function

These statements are the body of the module.

A function must have a Return statement. This causes a
value to be sent back to the part of the program that called
the function.

⎫
⎬
⎭

The first line is the function header. It begins with the word Function, followed by
these items:

• DataType is the data type of the value that the function returns.
• FunctionName is the name of the function.
• An optional parameter list appears inside a set of parentheses. If the function

does not accept arguments, then an empty set of parentheses will appear.

Beginning at the line after the function header, one or more statements will appear.
These statements are the function’s body, and are performed any time the function is
executed. One of the statements in the body must be a Return statement, which takes
the following form:

Return value

The value that follows the word Return is the value that the function will send back
to the part of the program that called the function. Here is an example:

Function Integer sum(Integer num1, Integer num2)
Declare Integer result
Set result = num1 + num2
Return result

End Function

Opening an Output File and Writing Data To It
In our pseudocode, we first declare an OutputFile variable, and then we use the Open
statement to open the file. Here is an example:

Declare OutputFile customerFile
Open customerFile "customers.dat"

We then use the Write statement to write data to the file. Here is an example:

Write customerFile "Charles Pace"

When finished writing to the file, we use the Close statement to close the file. Here is
an example:

Close customerFile

Opening an Input File and Reading Data from It
In our pseudocode, we first declare an InputFile variable, and then we use the Open
statement to open the file. Here is an example:

Declare InputFile inventoryFile
Open inventoryFile "inventory.dat"

We then use the Read statement to read data from the file. Here is an example:

Read inventoryFile itemName

This statement reads an item from the file and stores it in the itemName variable.
When finished reading the file, we use the Close statement to close the file. Here is an
example:

Close inventoryFile

Appendix C Pseudocode Reference 597

598 Appendix C Pseudocode Reference

Detecting the End of an Input File
In our pseudocode we use the eof function to determine whether we have reached the
end of an input file. Here is the function’s general format:

eof(internalFileName)

The eof function accepts a file’s internal name as an argument, and returns true if the
end of the file has been reached, or false if the end of the file has not been reached. The
following pseudocode shows an example:

// Declare an input file
Declare InputFile salesFile

// A variable to hold a sales amount
// that is read from the file
Declare Real sales

// Open the sales.dat file.
Open salesFile "sales.dat"

// Read all of the items in the file
// and display them.
While NOT eof(salesFile)

Read salesFile sales
Display currencyFormat(sales)

End While

// Close the file.
Close salesFile

Deleting a File
To delete a file we use the Delete statement. Here is the general format:

Delete Filename

In the general format, Filename is the name of the file on the system’s disk. Here is an
example:

Delete "customers.dat"

Renaming a File
To rename a file we use the Rename statement. Here is the general format:

Rename ExistingName, NewName

In the general format, ExistingName is the file’s existing name (on the system’s disk),
and NewName is the file’s new name. Here is an example:

Rename "temp.dat", "customers.dat"

Defining a Class
General format:

Class ClassName

Field declarations and method definitions go here...

End Class

The first line starts with the word Class, followed by the name of the class. Next you
write the declarations for the class’s fields and the definitions of the class’s methods.
The words End Class appear at the end of the class definition. Here is the CellPhone
example that is shown in Chapter 14:

Class CellPhone
// Field declarations
Private String manufacturer
Private String modelNumber
Private Real retailPrice

// Method definitions
Public Module setManufacturer(String manufact)

Set manufacturer = manufact
End Module

Public Module setModelNumber(String modNum)
Set modelNumber = modNum

End Module

Public Module setRetailPrice(Real retail)
Set retailPrice = retail

End Module

Public Function String getManufacturer()
Return manufacturer

End Function

Public Function String getModelNumber()
Return modelNumber

End Function

Public Function Real getRetailPrice()
Return retailPrice

End Function
End Class

Creating an Instance of a Class
To create an instance of a class (in other words, an object), you declare a variable to
reference the object, and then you use the New operator to create the instance. Here is
an example that creates an instance of the CellPhone class previously shown:

Declare CellPhone myPhone
Set myPhone = New CellPhone()

The first statement declares a variable named myPhone. The second statement creates
an instance of the CellPhone class and assigns its memory address to the myPhone
variable.

Appendix C Pseudocode Reference 599

This page intentionally left blank

D

A-1

Answers to Checkpoint
Questions

Chapter 1
1.1 A program is a set of instructions that a computer follows to perform a task.

1.2 Hardware is all of the physical devices, or components, that a computer is made of.

1.3 The central processing unit (CPU), main memory, secondary storage devices, input devices,
and output devices.

1.4 The CPU

1.5 Main memory

1.6 Secondary storage

1.7 Input device

1.8 Output device

1.9 One byte

1.10 A bit

1.11 The binary numbering system.

1.12 It is an encoding scheme that uses a set of 128 numeric codes to represent the English letters,
various punctuation marks, and other characters. These numeric codes are used to store
characters in a computer’s memory. (ASCII stands for the American Standard Code for
Information Interchange.)

1.13 Unicode

1.14 Digital data is data that is stored in binary, and a digital device is any device that works with
binary data.

1.15 Machine language

1.16 Main memory, or RAM

1.17 The fetch-decode-execute cycle.

1.18 It is an alternative to machine language. Instead of using binary numbers for instructions,
assembly language uses short words that are known as mnemonics.

1.19 A high-level language

A
P

P
E

N
D

IX

A-2 Appendix D Answers to Checkpoint Questions

1.20 Syntax

1.21 A compiler

1.22 An interpreter

1.23 A syntax error

1.24 The operating system

1.25 A utility program

1.26 Application software

Chapter 2
2.1 Any person, group, or organization that is asking you to write a program.

2.2 A single function that the program must perform in order to satisfy the customer.

2.3 A set of well-defined logical steps that must be taken to perform a task.

2.4 An informal language that has no syntax rules, and is not meant to be compiled or executed.
Instead, programmers use pseudocode to create models, or “mock-ups” of programs.

2.5 A diagram that graphically depicts the steps that take place in a program.

2.6 Ovals are terminal symbols. Parallelograms are either output or input symbols. Rec-
tangles are processing symbols.

2.7 Input, processing, and output.

2.8 A set of statements that execute in the order that they appear.

2.9 A string is a sequence of characters that is used as data. A string literal is a string that
appears in the actual code of a program.

2.10 Quotation marks

2.11 A storage location in memory that is represented by a name.

2.12 • Variable names must be one word. They cannot contain spaces.
• In most languages, punctuation characters cannot be used in variable names. It is

usually a good idea to use only alphabetic letters and numbers in variable names.
• In most languages, the first character of a variable name cannot be a number.

2.13 camelCase

2.14 • The program pauses and waits for the user to type something on the keyboard, and
then press the e key.

• When the e key is pressed, the data that was typed is stored in the temperature
variable.

2.15 Any hypothetical person that is using a program and providing input for it.

2.16 A message that tells (or asks) the user to enter a specific value.

2.17 1. Display a prompt on the screen.
2. Read a value from the keyboard.

2.18 The term user-friendly is commonly used in the software business to describe programs
that are easy to use.

2.19 A statement that sets a variable to a specified value.

2.20 It is replaced.

2.21 1. Perform any operations that are enclosed in parentheses.
2. Perform any operations that use the exponent operator to raise a number to a

power.
3. Perform any multiplications, divisions, or modulus operations as they appear from

left to right.
4. Perform any additions or subtractions as they appear from left to right.

2.22 It raises a number to a power.

2.23 It performs division, but instead of returning the quotient it returns the remainder.

2.24 The variable’s name and data type.

2.25 Yes, you must write a variable declaration before any other statement that uses the
variable.

2.26 The assignment of a value to a variable at the time the variable is declared.

2.27 Yes, they are a common cause of errors. If an uninitialized variable is used in an oper-
ation such as a calculation, a logic error will occur.

2.28 A variable that has been declared, but has not been initialized or assigned a value.

2.29 External documentation is typically designed for the user. It consists of documents such
as a reference guide that describes the program’s features, and tutorials that teach the
user how to operate the program.

2.30 Internal documentation appears as comments in a program’s code. Comments are
short notes placed in different parts of a program, explaining how those parts of the
program work.

2.31 Programmers generally write block comments and line comments. Block comments take
up several lines and are used when lengthy explanations are required. Line comments
are comments that occupy a single line, and explain a short section of the program.

Chapter 3
3.1 A module is a group of statements that exist within a program for the purpose of per-

forming a specific task.

3.2 A large task is divided into several smaller tasks that are easily performed.

3.3 If a specific operation is performed in several places in a program, a module can be
written once to perform that operation, and then be executed any time it is needed.

3.4 Modules can be written for the common tasks that are needed by the different pro-
grams. Those modules can then be incorporated into each program that needs them.

3.5 When a program is developed as a set of modules that each perform an individual task,
then different programmers can be assigned the job of writing different modules.

Appendix D Answers to Checkpoint Questions A-3

A-4 Appendix D Answers to Checkpoint Questions

3.6 In most languages, a module definition has two parts: a header and a body. The header
indicates the starting point of the module, and the body is a list of statements that be-
long to the module.

3.7 To call a module means to execute the module.

3.8 When the end of the module is reached, the computer jumps back to the part of the
program that called the module, and the program resumes execution at that point.

3.9 • The overall task that the program is to perform is broken down into a series of subtasks.
• Each of the subtasks is examined to determine whether it can be further broken down

into more subtasks. This step is repeated until no more subtasks can be identified.
• Once all of the subtasks have been identified, they are written in code.

3.10 A local variable is a variable that is declared inside a module. It belongs to the module
in which it is declared, and only statements inside the same module can access it.

3.11 The part of a program in which a variable may be accessed.

3.12 No, it is not permissible. The compiler or interpreter would not know which variable
to use when a statement tries to access one of them.

3.13 Yes, it is permissible.

3.14 Arguments

3.15 Parameters

3.16 Yes, an error will usually occur if an argument’s data type is different from the data
type of the parameter it is being passed to.

3.17 A parameter variable’s scope is usually the entire module in which the parameter is
declared.

3.18 Passing an argument by value means that only a copy of the argument’s value is passed
into the parameter variable. If the contents of the parameter variable are changed in-
side the module, it has no effect on the argument in the calling part of the program.
Passing an argument by reference means that the argument is passed into a special type
of parameter known as a reference variable. When a reference variable is used as a pa-
rameter in a module, it allows the module to modify the argument in the calling part of
the program.

3.19 The entire program

3.20 Here are three:
• Global variables make debugging difficult. Any statement in a program can change

the value of a global variable. If you find that the wrong value is being stored in a
global variable, you have to track down every statement that accesses it to determine
where the bad value is coming from. In a program with thousands of lines of code,
this can be difficult.

• Modules that use global variables are usually dependent on those variables. If you
want to use such a module in a different program, you will most likely have to redesign
it so it does not rely on the global variable.

• Global variables make a program hard to understand. A global variable can be mod-
ified by any statement in the program. If you are to understand any part of the pro-
gram that uses a global variable, you have to be aware of all the other parts of the
program that access the global variable.

Appendix D Answers to Checkpoint Questions A-5

3.21 A global constant is a named constant that is available to every module in the program. It
is permissible to use global constants. Because a global constant’s value cannot be changed
during the program’s execution, you do not have to worry about its value being altered.

Chapter 4
4.1 A logical design that controls the order in which a set of statements executes.

4.2 It is a program structure that can execute a set of statements only under certain circum-
stances.

4.3 A decision structure that provides a single alternative path of execution. If the condi-
tion that is being tested is true, the program takes the alternative path.

4.4 An expression that can be evaluated as either true or false.

4.5 You can determine whether one value is greater than, less than, greater than or equal
to, less than or equal to, equal to, or not equal to another value.

4.6 If y == 20 Then
Set x = 0

End If

4.7 If sales >= 10000 Then
Set commission = 0.2

End If

4.8 A dual alternative decision structure has two possible paths of execution—one path is
taken if a condition is true, and the other path is taken if the condition is false.

4.9 If-Then-Else

4.10 When the condition is false.

4.11 z is not less than a.

4.12 Boston
New York

4.13 A dual alternative decision structure has two possible paths of execution—one path is
taken if a condition is true, and the other path is taken if the condition is false.

4.14 If-Then-Else

4.15 If the condition is false.

4.16 If number == 1 Then
Display "One"

Else If number == 2 Then
Display "Two"

Else If number == 3 Then
Display "Three"

Else
Display "Unknown"

End If

A-6 Appendix D Answers to Checkpoint Questions

4.17 A structure that tests the value of a variable or an expression and then uses that value
to determine which statement or set of statements to execute.

4.18 With a Select Case statement.

4.19 A variable or an expression.

4.20 In such an event, you can use the If-Then-Else If statement, or a nested decision
structure.

4.21 It is an expression that is created by using a logical operator to combine two Boolean
subexpressions.

4.22 F
T
F
F
T
T
T
F
F
T

4.23 T
F
T
T
T

4.24 The AND operator: If the expression on the left side of the AND operator is false, the
expression on the right side will not be checked.
The OR operator: If the expression on the left side of the OR operator is true, the expres-
sion on the right side will not be checked.

4.25 If speed >= 0 AND speed <= 200 Then
Display "The number is valid"

End If

4.26 If speed < 0 OR speed > 200 Then
Display "The number is not valid"

End If

4.27 True or false

4.28 A variable that signals when some condition exists in the program.

Chapter 5
5.1 A structure that causes a section of code to repeat.

5.2 A loop that uses a true/false condition to control the number of times that it repeats.

5.3 A loop that repeats a specific number of times.

5.4 An execution of the statements in the body of the loop.

Appendix D Answers to Checkpoint Questions A-7

5.5 A pretest loop tests its condition before it performs an iteration. A posttest loop tests its
condition after it performs an iteration.

5.6 Before

5.7 After

5.8 A loop that has no way of stopping, and repeats until the program is interrupted.

5.9 A Do-While loop iterates while a condition is true. When the condition is false, the
Do-While loop stops. A Do-Until loop iterates until a condition is true. When the con-
dition is true, the Do-Until loop stops.

5.10 A variable that is used to store the number of iterations that it has performed.

5.11 Initialization, test, and increment.

5.12 Incrementing a variable means increasing its value. Decrementing a variable means
decreasing its value.

5.13 6

5.14 1
2
3
4
5

5.15 0
100
200
300
400
500

5.16 1
2
3
4
5
6
7
8

5.17 1
3
5
7

5.18 5
4
3
2
1

A-8 Appendix D Answers to Checkpoint Questions

5.19 1. A loop that reads each number in the series.
2. A variable that accumulates the total of the numbers as they are read.

5.20 A variable that is used to accumulate the total of a series of numbers.

5.21 Yes, it should be initialized with the value 0. This is because values are added to the ac-
cumulator by a loop. If the accumulator does not start at the value 0, it will not contain
the correct total of the numbers that were added to it when the loop ends.

5.22 15

5.23 5

5.24 15

5.25 A sentinel is a special value that marks the end of a list of values.

5.26 A sentinel value must be unique enough that it will not be mistaken as a regular value
in the list.

Chapter 6
6.1 When a module finishes, the program merely returns back to the part of the program

that called the module, and execution resumes at that point. When a function finishes,
it returns a value back to the part of the program that called it.

6.2 A prewritten function that comes with a programming language.

6.3 The term black box is used to describe any mechanism that accepts input, performs
some operation that cannot be seen on the input, and produces output. A library func-
tion can be regarded as a black box because you cannot see the code inside the func-
tion. The function accepts input, performs an operation on the input, and produces
output.

6.4 It assigns a random number in the range of 1 through 100 to the x variable.

6.5 It displays a random number in the range of 1 through 20.

6.6 The Return statement specifies the value that the function returns to the part of the
program that called the function. When the Return statement is executed, it causes the
function to terminate and return the specified value.

6.7 a. doSomething
b. Integer
c. 10

6.8 A chart, or table, that describes a function’s input, processing, and output.

6.9 A function that returns either true or false.

Chapter 7
7.1 It means that if bad data (garbage) is provided as input to a program, the program will

produce bad data (garbage) as output.

7.2 When input is given to a program, it should be inspected before it is processed. If the
input is invalid, then it should be discarded and the user should be prompted to enter
the correct data.

Appendix D Answers to Checkpoint Questions A-9

7.3 The input is read, and then a pretest loop is executed. If the input data is invalid, the
body of the loop executes. In the body of the loop, an error message is displayed so the
user will know that the input was invalid, and then the new input is read. The loop re-
peats as long as the input is invalid.

7.4 It is the input operation that takes place just before an input validation loop. The pur-
pose of the priming read is to get the first input value.

7.5 None

Chapter 8
8.1 No, you cannot. All of the items in an array must be of the same data type.

8.2 A nonnegative integer that specifies the size of an array.

8.3 No

8.4 An individual storage location in an array.

8.5 A number that identifies a specific element in an array.

8.6 0

8.7 a. numbers
b. 7
c. Real
d. 6

8.8 Many languages support arrays bounds checking, which means they do not allow a
program to use an invalid array subscript.

8.9 An off-by-one error occurs when a loop iterates one time too many or one time too
few.

8.10 An algorithm developed for the purpose of locating a specific item in a larger collection
of data, such as an array.

8.11 The first element in the array.

8.12 The loop sequentially steps through each element in the array, comparing the elements
to the value being searched for. When the value is found, the loop stops.

8.13 It looks at every element in the array.

8.14 You use a function similar to the contains function described in this chapter. The
contains function returns true if a string is found inside another string, or false
otherwise.

8.15 To calculate the total of the values in an array, you use a loop with an accumulator
variable. The loop steps through the array, adding the value of each array element to
the accumulator.

8.16 The first step in calculating the average of the values in an array is to get the sum of the
values. You use the algorithm for totaling the values in an array to perform this. The
second step is to divide the sum by the number of elements in the array.

A-10 Appendix D Answers to Checkpoint Questions

8.17 You create a variable to hold the highest value. In the examples shown in this book, the
variable is named highest. Then, you assign the value at element 0 to the highest
variable. Next, you use a loop to step through the rest of the array elements, beginning
at element 1. Each time the loop iterates, it compares an array element to the highest
variable. If the array element is greater than the highest variable, then the value in the
array element is assigned to the highest variable. When the loop finishes, the highest
variable will contain the highest value in the array.

8.18 You create a variable to hold the lowest value. In the examples shown in this book, the
variable is named lowest. Then, you assign the value at element 0 to the lowest vari-
able. Next, you use a loop to step through the rest of the array elements, beginning at
element 1. Each time the loop iterates, it compares an array element to the lowest
variable. If the array element is less than the lowest variable, then the value in the ar-
ray element is assigned to the lowest variable. When the loop finishes, the lowest
variable will contain the lowest value in the array.

8.19 You assign the individual elements of the array that you are copying to the elements of
the other array. This is usually best done with a loop.

8.20 You use the same subscript to access data items in the two arrays.

8.21 It would be stored in creditScore[82]

8.22 88 rows and 100 columns

8.23 Set points[87][99] = 100

8.24 Constant Integer ROWS = 3
Constant Integer COLS = 5
Declare Integer table[ROWS][COLS] = 12, 24, 32, 21, 42,

14, 67, 87, 65, 90,
19, 1, 24, 12, 8

8.25 Declare Integer row
Declare Integer col
For row = 0 To ROWS – 1

For col = 0 to COLS – 1
Set info[row][col] = 99

End For
End For

8.26 Constant Integer RACKS = 50
Constant Integer SHELVES = 10
Constant Integer BOOKS = 25
Declare String books[RACKS][SHELVES][BOOKS]

Chapter 9
9.1 The bubble sort

9.2 The insertion sort algorithm

9.3 The selection sort algorithm

Appendix D Answers to Checkpoint Questions A-11

9.4 The sequential search algorithm simply uses a loop to step through each element of an
array, comparing each element’s value with the value being searched for. The binary
search algorithm, which requires the values in the array to be sorted in order, starts
searching at the element in the middle of the array. If the middle element’s value is
greater than the value being searched for, the algorithm next tests the element in the
middle of the first half of the array. If the middle element’s value is less than the value
being searched for, the algorithm next tests the element in the middle of the last half of
the array. Each time the array tests an array element and does not find the value being
searched for, it eliminates half of the remaining portion of the array. This method con-
tinues until the value is found, or there are no more elements to test. The binary search
is more efficient than the sequential search.

9.5 500

9.6 10

Chapter 10
10.1 On the computer’s disk.

10.2 A file that a program writes data to. It is called an output file because the program
sends output to it.

10.3 A file that a program reads data from. It is called an input file because the program
receives input from it.

10.4 1. Open the file.
2. Process the file.
3. Close the file.

10.5 Text and binary. A text file contains data that has been encoded as text, using a scheme
such as Unicode. Even if the file contains numbers, those numbers are stored in the file
as a series of characters. As a result, the file may be opened and viewed in a text editor
such as Notepad. A binary file contains data that has not been converted to text. As a
consequence, you cannot view the contents of a binary file with a text editor.

10.6 Sequential and direct access. When you work with a sequential access file, you access
data from the beginning of the file to the end of the file. When you work with a direct
access file, you can jump directly to any piece of data in the file without reading the
data that comes before it.

10.7 The file’s external name and internal name. The external name is the file name that
identifies the file on the disk. The internal name is like a variable name. It identifies the
file in your program code.

10.8 The file’s contents are erased.

10.9 Opening a file creates a connection between the file and the program. It also creates an
association between the file and its internal name.

10.10 Closing a file disconnects the file from the program.

10.11 A predefined character or set of characters that marks the end of piece of data. In many
languages, a delimiter is written after each item that is stored in a file.

10.12 A special character, or set of characters, known as the end-of-file marker.

A-12 Appendix D Answers to Checkpoint Questions

10.13 A file’s read position marks the location of the next item that will be read from the file.
When an input file is opened, its read position is initially set to the first item in the file.

10.14 You open the file in append mode. When you write data to a file in append mode, the
data is written at the end of the file’s existing contents.

10.15 Declare Integer counter
Declare OutputFile myFile
Open myFile "myfile.dat"
For counter = 1 To 10

Write myFile, counter
End For
Close myFile

10.16 The eof function determines whether the end of a file has been reached.

10.17 No, this usually causes an error.

10.18 It would mean that the program had reached the end of the file associated with the
name myFile.

10.19 b

10.20 A record is a complete set of data that describes one item, and a field is a single piece of
data within a record.

10.21 You copy all of the original file’s records to the temporary file, but when you get to the
record that is to be modified, you do not write its old contents to the temporary file. In-
stead, you write its new, modified values to the temporary file. Then, you finish copy-
ing any remaining records from the original file to the temporary file.

10.22 You copy all of the original file’s records to the temporary file, except for the record
that is to be deleted. The temporary file then takes the place of the original file. You
delete the original file and rename the temporary file, giving it the name that the origi-
nal file had on the computer’s disk.

Chapter 11
11.1 A menu-driven program displays a list of operations that it can perform on the screen,

and allows the user to select the operation that he or she wants the program to per-
form. The list of operations that is displayed on the screen is called a menu.

11.2 The user types the character that corresponds to the menu item that he or she wants to
select.

11.3 You use a decision structure of some type. You might choose a case structure, nested
If-Then-Else statements, or an If-Then-Else If statement.

11.4 Without a loop, the program would end after the selected action is performed. This
would be an inconvenience because it would require the user to rerun the program to
perform another action.

11.5 Ending the program should be an item that the user can select from the menu. When
the user selects this item, the loop stops and the program ends.

11.6 In a program that uses a single-level menu, all of the menu selections fit nicely in a sin-
gle menu. When the user selects an operation from the menu, the program immediately
performs that operation and then the program redisplays the menu.

Appendix D Answers to Checkpoint Questions A-13

11.7 A program that uses a multiple-level menu typically displays a main menu when the
program starts, showing only a few items, and then displays smaller submenus when
the user makes a selection.

11.8 Users often have trouble sorting through the items in a menu when given too many
choices.

Chapter 12
12.1 y

12.2 Set str[0] = "L"

12.3 If isDigit(str[0]) Then
delete(str, 0, 0)

End If

12.4 If isUpperCase(str[0]) Then
Set str[0] = "0"

End If

12.5 insert(str, 0, "Hello ")

12.6 delete(city, 0, 2)

Chapter 13
13.1 A recursive algorithm requires multiple method calls. Each method call requires several

actions to be performed by the computer. These actions include allocating memory
for parameters and local variables, and storing the address of the program location
where control returns after the method terminates. All of these actions are known as
overhead. In an iterative algorithm, which uses a loop, such overhead is unnecessary.

13.2 A case in which the problem can be solved without recursion.

13.3 A case in which the problem is solved using recursion.

13.4 When it reaches the base case.

13.5 In direct recursion, a recursive method calls itself. In indirect recursion, method A calls
method B, which in turn calls method A.

Chapter 14
14.1 An object is a software entity that contains both data and procedures.

14.2 Encapsulation is the combining of data and code into a single object.

14.3 When an object’s internal data is hidden from outside code and access to that data is
restricted to the object’s methods, the data is protected from accidental corruption. In
addition, the programming code outside the object does not need to know about the
format or internal structure of the object’s data.

14.4 Public methods can be accessed by entities outside the object. Private methods cannot
be accessed by entities outside the object. They are designed to be accessed internally.

A-14 Appendix D Answers to Checkpoint Questions

14.5 The metaphor of a blueprint represents a class.

14.6 Objects are the cookies.

14.7 A key word that specifies how code outside a class can access a field or method.

14.8 Private

14.9 The memory address of the object that it references.

14.10 It creates an object in the computer’s memory.

14.11 An accessor is a method that gets a value from a class’s field but does not change it. A
mutator is a method that stores a value in a field or changes the value of a field in some
other way.

14.12 A constructor is a method that typically initializes an object’s fields. A constructor exe-
cutes when an object is created.

14.13 If you do not write a constructor in a class, most languages automatically provide one
when the class is compiled. The constructor that is automatically provided is usually
known as the default constructor. Typically, the default constructor assigns default
starting values to the object’s fields.

14.14 The top section is where you write the name of the class. The middle section holds a list
of the class’s fields. The bottom section holds a list of the class’s methods.

14.15 By writing a colon followed by String after the name of the field. Here is an example:
description : String

14.16 You use a minus sign (-) to indicate private specification, and a plus sign (+) to indicate
public specification.

14.17 A written description of the real-world objects, parties, and major events related to the
problem.

14.18 First, identify the nouns, pronouns, and noun phrases in the problem domain descrip-
tion. Then, refine the list to eliminate duplicates, items that you do not need to be con-
cerned with in order to solve the problem, items that represent objects instead of
classes, and items that represent simple values that can be stored in variables.

14.19 The things that the class is responsible for knowing, and the actions that the class is re-
sponsible for doing.

14.20 When the value of an item is dependent on other data and that item is not updated
when the other data is changed, it is said that the item has become stale.

14.21 The superclass is the general class and the subclass is the specialized class.

14.22 When an “is a” relationship exists between objects, it means that the specialized object
has all of the characteristics of the general object, plus additional characteristics that
make it special.

14.23 The superclass’s fields and methods, except those that are private.

14.24 Bird is the superclass and Canary is the subclass.

14.25 I’m a potato.
I’m a potato.

Appendix D Answers to Checkpoint Questions A-15

Chapter 15
15.1 The part of a computer and its operating system that the user interacts with.

15.2 A command line interface typically displays a prompt, and the user types a command,
which is then executed.

15.3 The program.

15.4 A program that responds to events that take place, such as the user clicking a button.

15.5 A diagram that shows how the program flows from one window to the next as the user
interacts with it.

15.6 Because programmers had to write code that constructed the windows, create graphi-
cal elements such as icons and buttons, and set each element’s color, position, size, and
other properties. Even a simple GUI program that displayed a message such as “Hello
world” required the programmer to write a hundred or more lines of code. Further-
more, the programmer could not actually see the program’s user interface until the pro-
gram was compiled and executed.

15.7 You drag the item from a “toolbox” to the window editor.

15.8 An item that appears in a program’s graphical user interface.

15.9 A component’s name identifies the component in the program, in the same way that a
variable’s name identifies the variable.

15.10 A component’s properties determine how the component appears on the screen.

15.11 An action that takes place within a program, such as the clicking of a button.

15.12 A module that automatically executes when a specific event occurs.

15.13 a. It responds to a Click event.
b. The component’s name is showValuesButton.

Index

601

Symbols
+ (addition operator), 44
' (apostrophe), 65
= (assignment operator), 126
// (comment symbol), 65
/ (division operator), 44, 61
== (equal to), 125, 126
^ (exponent operator), 44, 52
> (greater than), 125
>= (greater than or equal to), 125
< (less than), 125–126
<= (less than or equal to), 125
MOD (modulus), 44, 52, 264
* (multiplication operator), 44
!= (not equal to), 125, 126
<> (not equal to), 126
(pound symbol), 65
- (subtraction operator), 44
_ (underscore character), 38
() (parentheses), 50–52

append function, 255, 476
appending data to files, 386–387
application software, 21
arguments

arrays as, 307–315
defined, 94
multiple, 97–99
overview of, 94–96
-parameter compatibility, 96–97
passing, to modules, 94–107, 307–315
scope of parameter variable and, 93

arrays
assigning values to, 283–284
averaging values in, 302–303
binary searching of, 363–369, 508–510
bounds checking and, 291
copying, 306
elements of, 283–284, 288–291, 295–300,

322–323, 325–369, 504–505
files and, 396–397
flowcharts, 288, 290, 296, 301, 303–305,

310–314, 316, 318–319, 326, 327, 340–342,
353, 356, 359, 362, 364, 366

For Each loops, 294–295
highest value in, finding, 303–304
initialization of, 291, 308, 323, 364
inputting/outputting, 284–285
loops to step through, 285–288
lowest value in, finding, 305–306
in math expressions, 288–291
off-by-one errors and, 291–292
one-dimensional, 319, 320, 321
overview of, 281–283
parallel, 315–319
partially filled, 292–294
passing, to modules/functions, 307–315
processing elements of, 288–291
pseudocode, written in, 281–289, 291–295,

297–300, 302–318, 321–327, 340, 342–351,
354–355, 359–361, 364, 365, 367–369,
396–397, 590

recursion and, 504–505, 508–510

A
abs function, 250
access specification notation, 536
access specifier, 526
accessors, 531
accumulators, 207, 208
Ada language, 16
adding records to files, 402–405
addition operator (+), 44
algebraic expressions, 52–53
algorithms

defined, 29
for searching, 295–305, 308, 363–369
for sorting, 325–362

AMD, 13
American Standard Code for Information

Interchange. See ASCII
AND operator, 153, 159, 270

truth table for, 154–155
apostrophe ('), 65

602 Index

sequential searching of, 295–300, 363–364
sorting of, 325–362
string, 298–300, 347–349
subscripts of, 283, 285, 287, 291, 292, 297,

299, 315, 316, 321, 322, 329, 343, 364, 367,
477, 479, 509

summing elements of, 504–505
swapping elements in, 338–342, 352–357
three-dimensional, 328–329
totaling values in, 301–302
two-dimensional, 319–327, 590

ascending order, sorting in, 337, 338, 344–347
ASCII (American Standard Code for Information

Interchange), 377
list of characters, 585
overview of, 10, 138
string comparisons and, 138–140

assembler programs, 15
assembly language, 14–15
assignment operator (=), 126
assignment statement, 60, 126, 529

defined, 41
for variables, 41–43

average, calculating an, 50–52
averaging values of array elements, 302–303

B
BackColor property, 572
base case, 501
base classes. See superclasses
BASIC (Beginners All-purpose Symbolic

Instruction Code), 16
batting average program, 68–70
Bell Laboratories, 16
binary files, 377
binary numbering system, 8–10
binary search

efficiency of, 364, 366
overview of, 363
recursive, 508–510
using, 364–369

binarySearch function, 508–509
bits (binary digits), 7
black boxes, 226
blank lines, in code, 58, 67
block comments, 65
body

of function, 233, 234
of loop, 171, 173, 174, 178–181, 187, 191–196
of module, 82–83

Boole, George, 124
Boolean expressions, 270

compound, 153–155, 159, 273, 482, 488
dual alternative decision structures and, 131
functions, 246–248
logical operators and, 153–159
relational operators and, 124–126
values, returning, 246–248, 479
variables, 160–161, 296, 487

bounds checking, arrays and, 291
bubble sort, 337

designing, 342–344
overview of, 338–340
swapping elements in, 338–342
using, 344–348

buffers, 379
buttons, 571
bytes, 7

C
C language, 61, 65, 84, 126, 154

described, 16
C++ language, 19, 57, 61 65, 84, 126, 154, 530, 569

described, 16
C# language, 16, 19, 569
calculations, performing

average, an, 50–52
cell phone overage fees, 45–46
overview of, 44
percentage, a, 46–48

calling modules, 82–85, 88–91, 596
camelCase naming convention, 38
case-insensitive comparisons, 255
case-sensitive comparisons, 255
Case statement, 149
case structures

overview of, 148–150
using, 151–153

CDs (compact discs), 6
central processing unit. See CPU
character-by-character text processing, 477–479
Character data type, 57
characters

See also strings; text processing
deleting/inserting, 485–490
lowercase characters, 38, 138, 173, 186,

255–256, 274, 475, 476, 479, 481–484
storing, 10
testing, 479–484
uppercase, 10, 38, 62, 138, 186, 255–256, 274,

475, 476, 479–484, 525

arrays (continued)

Index 603

check boxes, 571
class(es)

accessor method for, 531
constructor method for, 531–534
creating a, 525–531, 598–599
defined, 523
difference between objects and,

523–524
finding, 537–547
inheritance and, 547–554
instance of a, 524, 599
members of a, 525
mutator method for, 531
nouns, 538–541
overview of, 523–524
polymorphism and, 555–559
problem domain, description for, 537–538,

541, 542, 543, 545
responsibilities of, 537–547
stale data, avoiding, 547
sub- (derived), 548, 552–559
super- (base), 548, 552–559
Unified Modeling Language (UML) and,

534–536, 542, 544, 545
class variables, 529–530
Close statement, 380, 383
closing files, 377, 379–381
COBOL (Common Business-Oriented Language),

15, 17
described, 16

code, source, 18–19
code reuse, 80
combo boxes, 571
command line interface, 565
comments, 591

block, 65
defined, 64
examples of, 66–67
line, 65
symbol (//) for, 64–65

compact discs (CDs), 6
compilers and interpreters, 17–19, 27
components

GUI, 570–572
hardware, 2–6

compound Boolean expressions, 153–155, 273,
482, 488

computers
data storage, 7–11
hardware, 2–6, 12–15
overview of, 1–2

programming overview, 12–19
software, 2, 20–21

concatenation, 255
condition-controlled loops

See also specific loops
defined, 170
using, 170–189

conditions, testing series of, 144–146
connector symbol, 52
constants

global, 109–112
initialization of, 62–63, 111, 200, 252,

285, 293
named, 62–63, 66–67, 589

constructors
default, 534
defined, 531
using, 531–534

contains function, 257, 299, 476
control break logic, 415–421
controls (GUI components), 571
control structures, 122, 141

defined, 35, 121
conventions, programming style, 58, 66–67,

83, 132
cookies, 376
copying

of arrays, 306
of files, 412
of records, 408
secondary storage devices and, 5–6

cos function, 250
count-controlled loops

See also specific loops
counter variable in body of loop, 194–196
decrementation in, 200, 205–206
defined, 170, 189
designing, 197–199
For statement, 189, 191–193
incrementation in, 190–192, 196–198,

202–205
logic of, 190
overview of, 189

Counters (counter variables)
in body of loop, 194–196
decrementing, 200, 205–206
incrementing, 190–192, 196–198, 202–205
initialization of, 190, 191
overview of, 190
testing of, 190, 191
user control of, 200–202

604 Index

CPU (central processing unit)
machine language instructions for, 12–15
role of, 3–4, 12

currencyFormat function, 254

D
.dat file extension, 379
data hiding, 520–521
data storage

See also files
of characters, 10
of images, 11
of music, 11
of numbers, 8–11
overview of, 7, 375–376

data types
compatibility of, 60–61
conversion functions, 251–254
described, 56–57
object-oriented programming (OOP) and,

535–536
variables and, 56–57

dates, validating, 276
debugging, 28
decision structures (selection structures)

Boolean expressions in, 124–126, 131,
153–159

Boolean variables in, 160–161
case structures, 148–153
dual alternative, 131–136
examples of, 122, 123–124, 127, 130, 131,

136–137, 142, 145, 149, 150, 151
If-Then-Else If statements in, 146–148, 153
If-Then-Else statements in, 131–136, 143,

156–159, 432
If-Then statements in, 124, 126–130, 154, 155,

156, 159
logical operators in, 153–159
for menu-driven programs, 430–436
multiple alternative, 144–146, 148–153
nested, 141–146, 150, 156
overview of, 121–122
pseudocode, written in, 124–130, 430–432, 434
relational operators in, 124–126
sequence structures combined with, 123–124
single alternative, 122
strings, comparing, 137–140

Declarations, variable, 56–61, 528–530, 589
Declare statement, 282–283, 322, 323, 382, 386
decrementation, of counters, 200, 205–206
default constructors, 534

Default section, 430, 436
Default statement, 149
defensive programming, 275–276
defining modules, 82–83, 88–91, 596
delete module, 485
Delete statement, 408
deleting

of characters in a string, 485–490
of files, 408–414, 598
in menu-driven programs, 450–469
of records, 412–414, 450–469

delimiters, file, 381–382
depth of recursion, 499
derived classes. See subclasses
descending order, sorting in, 337,

349–351, 357
designing a program

batting average, 68–70
compilers and interpreters, 27
flowcharts/flowcharting, 30–32
overview of, 27–28
pseudocode, 29–30
steps in, 28–29
tasks, program, 28–29

desk checking (hand tracing), 63–64
Dev-C��, 19
dialog boxes, 566
digital data, 11
digital devices, 11
digital versatile discs (DVDs), 6
direct access (random access) files, 378
direct recursion, 504
disk drives, 5–6
displaying

of menus, displaying, 429, 430, 440, 445–446,
448, 450, 464, 465, 468, 469

of multiple items, 38–39
of records, 402–405
of screen output, 33–34, 590

Display statement, 17, 33–34, 42, 59, 67, 83, 84,
93, 102, 108, 148, 150, 154, 228, 231, 287,
385, 487

for multiple items, 38–39
as user prompt, 40

divide and conquer, 80–81
division, integer, 61
division operator (/), 44, 61
.doc file extension, 378
documentation

external, 64
internal, 64–65

Index 605

dot notation, 530
Do-Until loops, 202, 594

logic of, 186
overview of, 170, 186
pseudocode, written in, 187–188
selecting, 189

Do-Until statement, 187
Do-While loops, 202, 594

designing, 184–186
logic of, 181
in menu-driven programs, 446, 448
overview of, 170
posttesting with, 180
pseudocode, written in, 181–184
selecting, 189

Do-While statement, 181
drives (secondary storage devices), 5–6
dual alternative decision structures, 131–136
duplicate variable names, 94
DVDs (digital versatile discs), 6

E
Eclipse, 19
editors

image, 375
programming language, 30
text, 18–19, 254, 377
window, 569

EDSAC computer, 142
elements, array

accessing, 322–323
assigning values to, 283–284
defined, 283
processing, 288–291
searching, 295–300
sorting, 325–362
summing, recursion and, 504–505
swapping, 338–342, 352–357

email applications, 475
Embarcadero JBuilder, 569
empty input, 275
encapsulation, 520
End Class statement, 525
end-of-file (EOF) markers, 381–382,

389–391, 598
end terminal, 30, 31, 34
end users, 36
ENIAC computer, 4
eof function, 390
“equal to” operator (==), 125, 126
erasing files, 412

errors
defensive programming to avoid, 275–276
logic, 28
off-by-one, 291–292
syntax, 17, 19, 27, 30, 42
type mismatch, 252

error traps (error handlers), 270
event handlers

defined, 576
writing, 575–580

events
defined, 575
event-driven programs, 567
ignored, 576

exponent operator (^), 44, 52
external documentation, 64

F
factorial function, 502
factorial of a number, calculating, 501–503
fetch-decode-execute cycle, 13–14
Fibonacci, Leonardo, 506
Fibonacci series, 505–507
field, defined, 397, 520, 540
filename extensions, 378
files

access methods for, 377–378
appending data to, 386–387
arrays and, 396–397
binary, 377
closing, 377, 379–381, 383–386
control break logic and, 415–421
copying, 412
creating, 378–381
deleting, 408–414, 598
delimiters, 381–382
direct access (random access), 378
end-of-file (EOF) markers, 381–382,

389–391, 598
erasing, 412
flowcharts, 380, 383, 388, 389, 391–395,

403–408, 410–412, 414
input, 375–377, 382–387, 389–395, 400–401,

597, 598
loops to process, 387–395
naming of, 378
opening, 377, 379–380, 382, 384, 386,

396–397, 597
output, 375–381, 386–387, 396–400, 597
overview of, 375–377
print spacing charts, 422

606 Index

pseudocode, file operations and, 378–401,
403–410, 412–413

reading data from, 375–377, 382–386, 389–395
reading records from, 400–401
record processing to, 397–414
renaming, 408–414, 598
sequential access, 377–378, 386
text, 377
types of, 377
writing data to, 375–381, 387–389,

396–397, 597
writing records to, 398–400

file specification document, 401–402
flags, 160–161
flash drives (memory sticks, USB drives), 6
flash memory, 6
floating-point notation, 11
floppy disk drives, 5–6
flowcharts/flowcharting

arrays and, 288, 290, 296, 301, 303–305,
310–314, 316, 318–319, 326, 327, 340–342,
353, 356, 359, 362, 364, 366

decision structures and, 121–161
defined, 30
examples of, 34, 37, 43, 46, 48, 51, 55, 67, 70,

86, 91–92, 101, 107, 112, 122, 123–124, 127,
130, 131, 136–137, 142, 145, 149, 150, 151,
171, 174, 177, 179–180, 181, 183, 185, 186,
188, 190, 191, 193, 195, 199, 208, 210, 214,
216, 230, 236, 242–245, 269, 272, 290, 296,
301, 304, 305, 310, 312–314, 318–319, 326,
327, 341, 342, 356, 362, 366, 380, 383, 389,
391, 393, 395, 404, 405, 407, 410–411, 414,
433, 435, 438–439, 443–445, 449, 452, 453,
455, 457, 459–460, 462, 463, 466–469

files and, 380, 383, 388, 389, 391–395,
403–408, 410–412, 414

functions and, 229, 230, 236, 240–245
input validation and, 269, 270, 272
loops and, 171, 174, 175, 178–188, 190–195,

198, 199, 208–210, 212, 214–216, 269
main modules and, 86, 91, 135, 179, 183, 242,

310, 443, 449, 452, 466, 468, 469
menu-driven programs and, 430, 432, 433, 435,

436, 438–439, 440, 443–446, 449–453,
455–457, 459–460, 462, 463, 465–469

modules and, 85–86, 91–92, 99, 101, 105, 107,
110, 112

overview of, 30–32
sequence structures and, 34–35, 121–124

symbols for, 587
user interface flow diagrams, 567–568

For Each loops, 294–295, 595
ForeColor property, 572
For loop/statement, 189, 191–193, 196–198, 217,

286–287, 295, 343, 477, 480, 595
format function, 489
formatting

functions for, 254
of strings, 485–490

FORTRAN (FORmula TRANslator), 16
forward slashes (//), 65
functions, 80
abs, 250
append, 255, 476
binarySearch, 508–509
body of, 233, 234
Boolean, 246–248
contains, 257, 476
cos, 250
data type conversion, 251–254
factorial, 502
flowcharts, 229, 230, 236, 240–245
format, 489
formatting, 254
getLowest, 310, 313–314
getTotal, 308, 310–313
header of, 233, 234
how to use, 237–239
input validation, 273–274
IPO charts and, 239–240
isDigit, 479
isEven, 247
isInteger, 258–259, 275, 476
isLetter, 479
isLower, 479
isReal, 258–259, 275, 476
isUpper, 479, 480, 483
isValid, 273
isValidFormat, 486, 487
isWhiteSpace, 479
length, 254, 275, 476, 481, 489
library, 225, 226, 228, 248–259, 274, 476,

479–485, 489
math, 248–251
modularizing with, 240–246
numberDigits, 481, 483–484
numberLowerCase, 481, 483, 484
numberUpperCase, 481, 482–483, 484
overview of, 225
passing arrays to, 307–315

files (continued)

Index 607

pow, 250
pseudocode, written in, 226–239, 241–259
random, 226–232
rangeSum, 504–505
round, 250
sin, 251
sqrt, 248–250
string, 254–259, 275, 475, 476
strings, returning, 246
stringToInteger, 258, 476
stringToReal, 258, 476
substring, 256–257, 476
sum, 236–237
tan, 251
toInteger, 251–254
toLower, 255–256, 274, 476
toReal, 251
toUpper, 255–256, 274, 476
unformat, 487
writing your own, 233–248, 596–597

G
games, 376
“garbage-in, garbage out” (GIGO), 267–268
GCD (greatest common divisor), 507–508
generalization/specialization, inheritance and,

547–548
getLowest function, 310, 313–314
“getters,” 531
getTotal function, 308, 310–313
global constants, 109–112
global variables, 108–109
graphical user interfaces (GUIs), 430

components, 570–572
creating a program, 567–568
designing, 568–575
event-driven programs, 567
event handlers, 575–580
overview of, 565–567
properties, 572
windows, 572–575

“greater than” operator (>), 125
“greater than or equal to” operator (>=), 125
greatest common divisor (GCD), 507–508
grouping, of math expressions, 50–52
GUIs. See graphical user interfaces

H
hand tracing (desk checking), 63–64
hardware

CPU (central processing unit), 3–4, 12–15

defined, 2
input devices, 6
memory, main, 5
output devices, 6
storage devices, secondary, 5–6

header
of function, 233, 234
of module, 82–83

hiding, data, 520–521
hierarchy charts (structure charts)

examples of, 87, 88–89, 99, 105, 110, 133
overview of, 87–88

highest value, finding, 303–304
high-level languages, 15–17
human languages, 17

I
IDEs. See integrated development environments
If statement, 344, 420
If-Then-Else If statement, 146–148, 153
If-Then-Else statement, 131–136, 143, 156–159,

432, 482, 487, 488, 592
If-Then statement, 124, 126–130, 154, 155, 156,

159, 241, 247, 480, 483, 489, 498, 499, 592
image data, 11
image editors, 375
incrementation, 191, 192, 198, 202–204

overview of, 190
by values other than 1, 196–197, 204–205

indentations, in code, 58
indirect recursion, 504
infinite loops, 178, 498
inheritance

generalization and specialization, 547–548
irreversibility of, 554
“is a” relationship, 548–553
Unified Modeling Language (UML) and,

549–551, 554
initialization

of arrays, 291, 308, 323, 364
of constants, 62–63, 111, 200, 252, 285, 293
constructors and, 531, 532
of counters, 190, 191
uninitialized variables, 56, 59–60, 64, 175,

182, 479
of variables, 56, 59–60, 102–104, 173, 175,

183, 190–191, 202–203, 206, 209, 258, 281
input, 32–33

arrays as, 284–285
defined, 32
empty, 275

608 Index

prompting the user for, 40
reading, 590
storing, in variables, 37–39
string, 39–40
variables and, 35–37

input, processing, and output (IPO) charts,
239–240

input devices, 6
input errors, defensive programming to avoid,

275–276
input files, 598

closing, 377, 383–386
defined, 376
opening, 377, 382, 384, 597
reading data from, 375–377, 382–386,

389–395, 597
reading records from, 400–401

Input statement, 35–36, 37, 40, 60, 91, 93,
182, 275

input symbols, 30–31, 34
input validation

as defensive programming, 275–276
flowcharts, 269, 270, 272
functions, writing, 273–274
logic for, 269
loop, 269–275
in menu-driven programs, 436–439
overview of, 267–268
posttest loops for, 272–273
pseudocode for, 269–275
of strings, 274–275

insert module, 485
insertion sort, 357–362
instance, of a class, 524, 599
instruction set, 12
Integer data type, 56, 57
integer division, 61
integrated development environments (IDEs)

components of, 19
examples of, 19, 569
GUI design and, 569, 571–574

Intel, 12, 13
internal documentation, 64–65
interpreters and compilers, 17–19, 27
iOS, 21
IPO (input, processing, and output) charts,

239–240
“is a” relationship, 548–553
isDigit function, 479
isEven function, 247

isInteger function, 258–259, 275, 476
isLetter function, 479
isLower function, 479
isReal function, 258–259, 275, 476
isUpper function, 479, 480, 483
isValidFormat function, 486, 487
isValid function, 273
isWhiteSpace function, 479
iterations

defined, 174
user control over number of, 200–202

J
Java, 17, 57, 65, 84, 126, 154, 569

described, 16
JavaScript, 16
JBuilder, 569
jGRASP, 19
.jpg file extension, 378

K
key words (reserved words), 17
keystrokes, reading, 91

L
labels, 571
languages

See also individual languages
assembly, 14–15
high-level languages, 15–17
human, 17
low-level, 15
machine, 12–15

length function, 254, 275, 476, 481, 489
“less than” operator (<), 125
“less than or equal to” operator (<=), 125–126
library functions, 274, 476, 489

character testing, 479–485
different ways to access, 228
math, 248–251
overview of, 225, 226, 476

line comments, 65
Linux, 21, 567
list boxes, 571
literals

numeric, 60–61
string, 35

localization, 254
local variables, 92–93
logical operators, 591
AND, 153, 154, 159, 270

input (continued)

Index 609

NOT, 153, 154, 391
numeric ranges, checking, 159
OR, 153–155, 270
truth tables for, 154–156

logic errors, 28
loops and looping

arrays, stepping through, 285–288
body of, 171, 173, 174, 178–181, 187,

191–196
condition-controlled, 170–189
count-controlled, 170, 189–206
counters in body of, 194–196
Do-Until, 170, 186–189, 202, 594
Do-While, 170, 180–186, 189, 202, 446,

448, 594
file processing and, 387–395
flowcharts, 171, 174, 175, 177–188,

190–195, 198, 199, 208–210, 212,
214–216, 269

For, 189, 191–193, 196–198, 286–287, 295,
343, 477, 480, 595

For Each, 294–295, 595
infinite, 178, 498
input validation, 269–275
in menu-driven programs, 445–449
modularizing the code in, 178–180
nested, 215–218, 326–327
overview of, 169–170
posttest, 180, 187, 272–273, 448
pretest, 175–177, 448
pseudocode, written in, 171–174, 181–184,

187–189, 191–192, 194, 196–198, 200–206,
208–209, 212–213, 215, 217–218, 269–275,
387–395, 593–595

recursion versus, 513–514
running total, calculating a, 207–210
selecting, 189
sentinels and, 211–214
text processing and, 477–478, 480
While, 170–178, 182, 183, 186, 189, 202–206,

269, 294, 593–594

M
machine language, 12–15
Mac OS, 21
Mac OS X, 567
main menus, 464–465, 468, 469
main modules, 85, 89, 93, 95, 96, 102, 104, 108,

116, 132–133, 178, 182, 186, 235, 241, 308,
309, 344, 418, 446, 450, 465, 481–482,
486–487, 489, 497–499

defined, 84, 440
flowcharts for, 86, 91, 135, 179, 183, 242, 310,

443, 449, 452, 466, 468, 469
hierarchy charts for, 87, 88, 99, 105, 110

managing records, 402–414
math expressions

array elements in, 288–291
defined, 44
grouping of, 50–52

math functions
abs, 250
cos, 250
overview of, 248
pow, 250
round, 250
sin, 251
sqrt, 248–250
tan, 251

math operations
advanced, 52–54
converting, to programming statements,

52–54
grouping, with parentheses, 50–52
order of, 48–49
performing calculations, 44–48, 50–52

math operators, 17, 44, 52, 591
members, of a class, 525
memory

flash, 6
RAM (random-access memory), 5, 375, 376

memory sticks (flash drives, USB drives), 6
menu-driven programs

decision structures for, 430–436
deleting records in, 450–469
designing, 450–463
flowcharts, 430, 432, 433, 435, 436, 438–439,

440, 443–446, 449–453, 455–457, 459–460,
462, 463, 465–469

loops and, 445–449
modularizing, 440–445
multiple-level menus, 464–469
overview of, 429–430

Lovelace, Ada, 16
lowercase characters, 138, 173, 186

camelCase naming convention, 38
isLower function, 479
numberLowerCase function, 481, 483, 484
passwords and, 475, 481–484
toLower function, 255–256, 274, 476
toUpper function, 255–256, 274, 476

lowest value, finding, 305–306
low-level languages, 15

610 Index

pseudocode, written in, 430–432, 434, 436–437,
440–442, 446–448, 450–454, 456–458,
460–465, 468–469

validating selections in, 436–439
menus

defined, 429
displaying, 429, 430, 440, 445–446, 448, 450,

464, 465, 468, 469
main, 464–465, 468, 469
multiple-level, 464–469
single-level, 464
sub-, 464–465

method parameter notation, 535–536
methods, 80

accessors, 531
defined, 520, 540
mutators, 531
private, 522
public, 522

microprocessors, 12, 13
defined, 4

Microsoft
C# language, 16, 19, 569
.Net platform, 16
Notepad, 254, 377
PowerPoint, 1, 21
Visual Basic (VB), 16, 19, 30, 61, 65, 126, 531,

569, 572, 574
Visual Studio, 19, 569
Windows, 16, 21, 378, 567
Word, 1, 21, 254, 378

mnemonics, 14
modifying records, 408–412
modularizing

the code in loops, 178–180
with functions, 240–246
of menu-driven programs, 440–445

modules
benefits of using, 80–81
body of, 82–83
calling, 82–85, 88–91, 596
defined, 79–80
defining, 82–83, 88–91, 596
flowcharts, 85–86, 91–92, 99, 101, 105, 107,

110, 112
global constants, 109–112
global variables, 108–109
header of, 82–83
hierarchy charts (structure charts), 87–89, 99,

105, 110, 133

local variables in, 92–93
main, 84–89, 91, 93, 95, 96, 102, 104, 108,

116, 132–133, 135, 175, 179, 182, 183, 186,
235, 241, 242, 308–310, 344, 418, 440, 443,
446, 449, 450, 452, 465, 466, 468, 469,
481–482, 486–487, 489, 497–499

naming, 82
overview of, 79–80
passing arguments to, 94–107, 307–315
passing arrays to, 307–315
testing of, 80
top-down design of, 86–87

modules, recursive. See recursion
modulus operator (MOD), 44, 52, 264
Motorola, 13
mouse, 430, 566
multiple alternative decision structures,

144–146
case structures, 148–153

multiple arguments, passing, 97–99
multiple items, displaying, 38–39
multiple-level menus, 464–469
multiplication operator (*), 44
music data, 11
mutators, 531

N
names/naming

camelCase convention for, 38
of constants, 62–63, 66–67, 589
duplicate variable, 94
of files, 378
of GUI components, 571–572
of modules, 82
of variables, 37–38, 94

nested decision structures, 150, 156
overview of, 141–143
programming style and, 143–144

nested loops, 215–218, 326–327
NetBeans, 19, 569, 570
.Net platform, 16
Notepad (text editor), 254, 377
“not equal to” operator (!=), 125, 126
“not equal to” operator (<>), 126
NOT operator, 153, 154, 391

truth table for, 156
nouns

identifying, 538
refining the list of, 538–541

numberDigits function, 481, 483–484
numberLowerCase function, 481, 483, 484

menu-driven programs (continued)

Index 611

numbers
negative, 11, 268, 270, 273, 275
real, 11, 56, 60, 61, 96, 233, 250–254, 258,

275, 282, 402, 577–579
storing, 8–11

numberUpperCase function, 481–484
numerical ranges, checking, 156
numeric literals, 60–61

O
object-oriented programming (OOP)

accessors, 531
access specification notation, 536
classes, 523–534, 537–559, 598–599
constructors, 531–534
data type and, 535–536
inheritance, 547–554
method parameter notation, 535–536
mutators, 531
objects, 520–524
overview of, 519–520
polymorphism, 555–559
pseudocode, written in, 525–534, 542–546,

549–553, 555–558, 598–599
Unified Modeling Language (UML) and,

534–536, 542, 544, 545, 549–551, 554
objects

See also class(es)
defined, 520
difference between classes and,

523–524
everyday example of an, 521–522
reusability of, 521

off-by-one errors, 291–292
one-dimensional arrays, 319, 320, 321
OOP. See object-oriented programming
opening files, 377, 379–380, 382, 384, 386,

396–397, 597
Open statement, 379
operands, 44
operating systems, 20–21
operations, math. See math operations
operators

logical, 153–159, 270, 391, 591
math, 17, 44, 52, 591
relational, 124–126, 591

optical devices, 6
OR operator, 153, 154, 270

truth table for, 155
output, 32–33, 39

arrays as, 284–285

defined, 32
displaying screen, 33–34, 590

output devices, 6
output files

appending data to, 386–387
closing, 377, 379–381
defined, 376
opening, 377, 379–381, 386, 396–397, 597
writing data to, 375–381, 387–389,

396–397, 597
writing records to, 398–400

output symbols, 30–31, 34
overhead actions, 500

P
parallel arrays, 315–319
parameter, 596

-argument compatibility, 96–97
defined, 95
scope of, 97

parameter lists, 98
parentheses, grouping math expressions with,

50–52
partially filled arrays, 292–294
partial string matches, 299
Pascal, Blaise, 16
Pascal language, 16
passing arguments to modules

argument and parameter compatibility, 96–97
arrays and, 307–315
multiple arguments, 97–99
overview of, 94–96
parameter variable scope, 97
by reference, 103–107
by value, 101–102

passwords, 475, 480–484
percentage, calculating a, 46–48
pixels (picture elements), 11
polymorphism

defined, 555
examples of, 555–558
practical uses of, 559

postal abbreviations, validating, 276
posttest loops, 180, 187, 272–273, 448
pound symbol (#), 65
PowerPoint, 1, 21
pow function, 250
pretest loops, 175–177, 448
priming reads, 269
print spacing charts, 422
Print statement, 17, 33, 416

612 Index

Private access specifier, 526
private methods, 522
problem domain

defined, 537
writing a description of the, 537–538, 541, 542,

543, 545
procedural programming, 520, 525

defined, 519
procedures, 80

defined, 519
processing

of array elements, 288–291
of records, 397–414
of text, 476–485

processing symbols, 30–31
program design. See designing a program
program development cycle, 28
programmer (software developer), 2, 29
programming language editors, 30
programming overview

assembly language, 14–15
compilers and interpreters, 17–19
high-level languages, 15–17
integrated development environments (IDEs), 19
machine language, 12–15

programming style
defined, 58
examples of, 66–67
If-Then-Else statements and, 132
If-Then statements and, 128–130
nested decision structures and, 143–144

programs
See also specific programs; software
defined, 1
designing, 27–31
documentation of, 64–65
hand tracing of, 63–64

prompts, user, 40
properties, GUI, 572
pseudocode

arrays written in, 281–289, 291–295, 297–300,
302–318, 321–327, 340, 342–351, 354–355,
359–361, 364, 365, 367–369, 396–397, 590

decision structures written in, 124–130,
430–432, 434

event handlers written in, 575–580
file operations and, 378–401, 403–410,

412–413
functions written in, 226–239, 241–259
“garbage in, garbage out,” 267–268
for input validation, 269–275

loops written in, 171–174, 181–184, 187–189,
191–192, 194, 196–198, 200–206, 208–209,
212–213, 215, 217–218, 269–275, 387–395,
593–595

menu-driven programs written in, 430–432,
434, 436–437, 440–442, 446–448, 450–454,
456–458, 460–465, 468–469

object-oriented programming written in,
525–534, 542–546, 549–553, 555–558,
598–599

overview of, 29–30
quick reference, 589–599
recursion written in, 498–510, 512–513
text processing written in, 477–490
translation and, 29, 30, 33, 56

Public access specifier, 526
public methods, 522
Python language, 17, 30, 61, 65, 83, 126

described, 16

R
radio buttons, 571
RAM (random-access memory), 375, 376

defined, 5
random access (direct access) files, 378
random function, 226–232
random numbers, generating, 225–231

other values, to represent, 231–232
rangeSum function, 504–505
reading

of data from files, 375–377, 382–386,
389–395, 597

of input, 590
of records from files, 400–401

read position, 384–385
Read statement, 382, 383, 385, 400
Real data type, 56–57, 61
real numbers, 11, 56, 233, 250, 282, 402

conversion functions, 251, 254, 258, 577, 579
errors, 60, 61, 96, 252, 253, 275, 578

reasonableness, checking for, 276
records

adding, 402–405
copying, 408
defined, 397
deleting, 412–414, 450–469
displaying, 402–405
managing, 402–414
modifying, 408–412
processing, 397–414
reading, 401

Index 613

searching, 406–407
writing, 398–400

recursion
arrays and, 504–505, 508–510
binary search with, 508–510
depth of, 499
direct, 504
factorial of a number, calculating, 501–503
Fibonacci series problem, 505–507
greatest common divisor, finding, 507–508
indirect, 504
looping versus, 513–514
overview of, 497–498
problem solving with, 500–504
pseudocode, written in, 498–510, 512–513
recursive module, defined, 497
summing range of array elements with, 504–505
Towers of Hanoi problem, 510–513

recursive case, 501
refactoring, 105
references, passing arguments by, 103–110
relational operators, 124–126, 591
renaming files, 408–414, 598
repetition structures. See loops and looping
reserved words (key words), 17
responsibilities, of a class, 537–547
return point, 85
Return statement, 233–235, 502

making the most of, 236–237
reusability

of code, 80
of objects, 521

round function, 250
Ruby language, 16
running total, calculating a, 207–210

S
samples, music, 11
scope

of parameters, 97
of variables, 93, 97

screen output, displaying, 33–34, 590
searches and searching

algorithms for, 295–305, 308, 363–369
binary, 363–369, 508–510
logic for, 296
in records, 406–407
sequential, 295–300, 363–364

secondary storage devices (drives), 5–6
Select Case statement, 148, 149, 592–593
selection sort, 351–357

selection structures. See decision structures
sentinels, 211–214
sequence structures, 121–122

decision structures combined with, 123–124
examples of, 123–124
overview of, 34–35

sequential access files, 377–378, 386
sequential searching, of arrays, 295–300, 363–364
Set statement, 41, 43, 63, 340
“setters,” 531
short-circuit evaluation, 155
sin function, 251
single alternative decision structures, 122
single-level menus, 464
size declarator, 283, 285, 289, 293, 309, 321, 345

defined, 282
slashes, forward (//), 65
sliders, 571
software

See also specific programs; programs
application, 21
defined, 2
system, 20–21
types of, 375–376

software developer (programmer), 2, 29
software development tools, 21
software requirements, 28–29
sorting, of arrays

algorithms for, 325–362
in ascending order, 337, 338, 344–347
bubble, 337–351
in descending order, 337, 349–351, 357
insertion, 357–362
selection, 351–357
of string arrays, 347–349

source code, 18–19
specialization/ generalization, inheritance and,

547–548
specifier, access, 526
spell-checkers, 475
spreadsheets, 375
sqrt function, 248–250
stale data, avoiding, 547
start terminal, 30, 31, 34
state abbreviations, validating, 276
statements, defined, 17

See also specific statements
step amount, 196
stepwise refinement, 87
storage, data. See data storage
storage devices, secondary (drives), 5–6

614 Index

string arrays
searching, 298–300
sorting, 347–349

string comparisons, 131–134
String data type, 56, 57
string functions
append, 255, 476
contains, 257, 476
isInteger, 258–259, 275, 476
isReal, 258–259, 275, 476
length, 254, 275, 476, 481, 489
overview of, 254, 476
stringToInteger, 258, 476
stringToReal, 258, 476
substring, 256–257, 476
toLower, 255–256, 274, 476
toUpper, 255–256, 274, 476

string literals, 35
strings

See also text processing
comparing, 137–140
defined, 35, 258
formatting/unformatting, 485–490
as input, 39–40
input validation of, 274–275
partial matches, 299
returning, 246

stringToInteger function, 258, 476
stringToReal function, 258, 476
structure charts. See hierarchy charts
structures

case, 148–153
combining, 123–124
control, 35, 121, 122, 141
sequence, 34–35, 121–124

structures, decision. See decision structures
structures, selection. See decision structures
style conventions, programming, 58, 66–67,

83, 132
subclasses (derived classes)

defined, 548
irreversibility of, 554
polymorphism and, 555–559
using, 548, 552–559

submenus, 464–465
subprograms, 80
subroutines, 80
subscripts, array, 285, 287, 291, 292, 297, 299,

315, 316, 321, 322, 329, 343, 364, 367, 509
defined, 283
invalid, 477, 479

substring function, 256–257, 476
subtraction operator (–), 44
sum function, 236–237
summing, of array elements, 504–505
Sun Microsystems

Java, 16, 17, 57, 65, 84, 126, 154, 569
described, 16
NetBeans, 19, 569, 570

superclasses (base classes)
defined, 548
irreversibility of, 554
polymorphism and, 555–559
using, 548, 552–559

swapping, of array elements, 338–342,
352–357

switch statements. See case structures
syntax, 17
syntax errors, 17, 19, 27, 30, 42
system software, 20–21

T
tan function, 251
tasks, program, 28–29
telephone numbers, formatting/unformatting of,

485–490
terminal symbols, 30–31, 34, 86, 236
testing

of characters, 479–484
of counters, 190
of modules, 80
post-, 180, 187
pre-, 175–177
of series of conditions, 144–146

text boxes, 571
text editors, 18–19, 254, 377
text files, 377
text messaging programs, 475
text processing

See also strings
character-by-character, 477–479
character testing library functions,

479–485
deleting/inserting characters in a string,

485–490
formatting/unformatting, 485–490
functions for, 476–485
isDigit function, 479
isLetter function, 479
isLower function, 479
isUpper function, 479, 480, 483
isWhiteSpace function, 479

Index 615

loops and, 477–478, 480
overview of, 475
password validation with, 480–484
pseudocode, written in, 477–490

three-dimensional arrays, 328–329
time measurements, validating, 276
toInteger function, 251–254
toLower function, 255–256, 274, 476
top-down design, 86–87
toReal function, 251
totals

in arrays, 301–302
running, 207–210

toUpper function, 255–256, 274, 476
Towers of Hanoi, 510–513
translation

assembler, 15
interpreters and compilers, 17–19, 27
pseudocode and, 29, 30, 33, 56

truncation, of a number, 61
two-dimensional arrays

accessing elements in, 322–323
declaring, 321, 590
overview of, 319–320
using, 323–327

two’s complement, 11
.txt file extension, 378
type mismatch error, 252

U
UML. See Unified Modeling Language
underscore (_) character, 38
unformat function, 487
unformatting, of strings, 485–490
Unicode, 10, 377

Latin Subset of, 585
Unified Modeling Language (UML)

defined, 534
diagrams, 534–535, 542, 544, 545, 549,

551, 554
inheritance and, 549–551, 554

uninitialized variables, 56, 59–60, 64, 175,
182, 479

uppercase characters, 10, 62, 138,
186, 525

camelCase naming convention, 38
case-insensitive comparisons, 255
case-sensitive comparisons, 255
isUpper function, 479, 480, 483
numberUpperCase function, 481–484
passwords and, 475, 481–484

toLower function, 255–256, 274, 476
toUpper function, 255–256, 274, 476

USB drives (memory sticks, flash
drives), 6

user interfaces
See also graphical user interfaces
defined, 565
designing, for GUI programs, 568–575
flow diagrams, 567–568

user prompts, 40
user-friendly, 40–41
users, 36
utility programs, 21

V
validation, input. See input validation
values

assigning, 283–284
averaging, 302–303
Boolean, 246–248, 479
highest, finding, 303–304
lowest, finding, 305–306
passing arguments by, 101–102
sentinel, 211–214
totaling, 301–302

variable declarations, 56–61, 528–530, 589
variables

See also specific variables
assignment of, 41–43
Boolean, 160–161, 296, 487
class, 529–530
data types and, 56–57
declaration of, 56–61, 528–530, 589
defined, 35
duplicate, 94
global, 108–109
initialization of, 56, 59–60, 102–104, 173,

175, 183, 190–191, 202–203, 206, 209,
258, 281

input and, 35–37
local, 92–93
mathematical operations on numerical, 44–54
naming, 37–38, 94
parameter, 95–97, 596
scope of, 97
uninitialized, 56, 59–60, 64, 175, 182, 479

Visual Basic (VB), 19, 30, 61, 65, 126, 531, 569
described, 16
GUI design and, 572, 574

Visual Studio, 19, 569
volatile memory, 5

616 Index

W
Web browsers, 254, 376, 475
While loops, 182, 183, 186, 269, 294, 397,

593–594
designing, 175–177, 202–206
infinite, 178
logic of, 171
in menu-driven programs, 448
modularizing the code in, 178–180
overview of, 170–171
pretesting with, 175–177
selecting, 189

widgets, 571
window editors, 569

windows, GUI, 572–575
Windows, Microsoft, 16, 21, 567

Explorer, 378
Word, Microsoft, 1, 21, 254, 378
word processors, 375, 475
Write statement, 33, 379, 380
writing

of data to files, 375–381, 387–389,
396–397, 597

of functions, 233–248, 596–597
of records to files, 398–400

Z
ZIP codes, validating, 276

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Introduction to Computers and Programming
	1.1 Introduction
	1.2 Hardware
	1.3 How Computers Store Data
	1.4 How a Program Works
	1.5 Types of Software
	Review Questions

	Chapter 2 Input, Processing, and Output
	2.1 Designing a Program
	2.2 Output, Input, and Variables
	2.3 Variable Assignment and Calculations
	IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees
	IN THE SPOTLIGHT: Calculating a Percentage
	IN THE SPOTLIGHT: Calculating an Average
	IN THE SPOTLIGHT: Converting a Math Formula to a Programming Statement
	2.4 Variable Declarations and Data Types
	2.5 Named Constants
	2.6 Hand Tracing a Program
	2.7 Documenting a Program
	IN THE SPOTLIGHT: Using Named Constants, Style Conventions, and Comments
	2.8 Designing Your First Program
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 3 Modules
	3.1 Introduction to Modules
	3.2 Defining and Calling a Module
	IN THE SPOTLIGHT: Defining and Calling Modules
	3.3 Local Variables
	3.4 Passing Arguments to Modules
	IN THE SPOTLIGHT: Passing an Argument to a Module
	IN THE SPOTLIGHT: Passing an Argument by Reference
	3.5 Global Variables and Global Constants
	IN THE SPOTLIGHT: Using Global Constants
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 4 Decision Structures and Boolean Logic
	4.1 Introduction to Decision Structures
	IN THE SPOTLIGHT: Using the If-Then Statement
	4.2 Dual Alternative Decision Structures
	IN THE SPOTLIGHT: Using the If-Then-Else Statement
	4.3 Comparing Strings
	4.4 Nested Decision Structures
	IN THE SPOTLIGHT: Multiple Nested Decision Structures
	4.5 The Case Structure
	IN THE SPOTLIGHT: Using a Case Structure
	4.6 Logical Operators
	4.7 Boolean Variables
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 5 Repetition Structures
	5.1 Introduction to Repetition Structures
	5.2 Condition-Controlled Loops: While, Do-While, and Do-Until
	IN THE SPOTLIGHT: Designing a While Loop
	IN THE SPOTLIGHT: Designing a Do-While Loop
	5.3 Count-Controlled Loops and the For Statement
	IN THE SPOTLIGHT: Designing a Count-Controlled Loop with the For Statement
	5.4 Calculating a Running Total
	5.5 Sentinels
	IN THE SPOTLIGHT: Using a Sentinel
	5.6 Nested Loops
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 6 Functions
	6.1 Introduction to Functions: Generating Random Numbers
	IN THE SPOTLIGHT: Using Random Numbers
	IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values
	6.2 Writing Your Own Functions
	IN THE SPOTLIGHT: Modularizing with Functions
	6.3 More Library Functions
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 7 Input Validation
	7.1 Garbage In, Garbage Out
	7.2 The Input Validation Loop
	IN THE SPOTLIGHT: Designing an Input Validation Loop
	7.3 Defensive Programming
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 8 Arrays
	8.1 Array Basics
	IN THE SPOTLIGHT: Using Array Elements in a Math Expression
	8.2 Sequentially Searching an Array
	8.3 Processing the Contents of an Array
	IN THE SPOTLIGHT: Processing an Array
	8.4 Parallel Arrays
	IN THE SPOTLIGHT: Using Parallel Arrays
	8.5 Two-Dimensional Arrays
	IN THE SPOTLIGHT: Using a Two-Dimensional Array
	8.6 Arrays of Three or More Dimensions
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 9 Sorting and Searching Arrays
	9.1 The Bubble Sort Algorithm
	IN THE SPOTLIGHT: Using the Bubble Sort Algorithm
	9.2 The Selection Sort Algorithm
	9.3 The Insertion Sort Algorithm
	9.4 The Binary Search Algorithm
	IN THE SPOTLIGHT: Using the Binary Search Algorithm
	Review Questions
	Debugging Exercise
	Programming Exercises

	Chapter 10 Files
	10.1 Introduction to File Input and Output
	10.2 Using Loops to Process Files
	IN THE SPOTLIGHT: Working with Files
	10.3 Using Files and Arrays
	10.4 Processing Records
	IN THE SPOTLIGHT: Adding and Displaying Records
	IN THE SPOTLIGHT: Searching for a Record
	IN THE SPOTLIGHT: Modifying Records
	IN THE SPOTLIGHT: Deleting Records
	10.5 Control Break Logic
	IN THE SPOTLIGHT: Using Control Break Logic
	Review Questions
	Debugging Exercise
	Programming Exercises

	Chapter 11 Menu-Driven Programs
	11.1 Introduction to Menu-Driven Programs
	11.2 Modularizing a Menu-Driven Program
	11.3 Using a Loop to Repeat the Menu
	IN THE SPOTLIGHT: Designing a Menu-Driven Program
	11.4 Multiple-Level Menus
	Review Questions
	Programming Exercises

	Chapter 12 Text Processing
	12.1 Introduction
	12.2 Character-by-Character Text Processing
	IN THE SPOTLIGHT: Validating a Password
	IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers
	Review Questions
	Debugging Exercises
	Programming Exercises

	Chapter 13 Recursion
	13.1 Introduction to Recursion
	13.2 Problem Solving with Recursion
	13.3 Examples of Recursive Algorithms
	Review Questions
	Programming Exercises

	Chapter 14 Object-Oriented Programming
	14.1 Procedural and Object-Oriented Programming
	14.2 Classes
	14.3 Using the Unified Modeling Language to Design Classes
	14.4 Finding the Classes and Their Responsibilities in a Problem
	IN THE SPOTLIGHT: Finding the Classes in a Problem
	IN THE SPOTLIGHT: Determining Class Responsibilities
	14.5 Inheritance
	14.6 Polymorphism
	Review Questions
	Programming Exercises

	Chapter 15 GUI Applications and Event-Driven Programming
	15.1 Graphical User Interfaces
	15.2 Designing the User Interface for a GUI Program
	IN THE SPOTLIGHT: Designing a Window
	15.3 Writing Event Handlers
	IN THE SPOTLIGHT: Designing an Event Handler
	Review Questions
	Programming Exercises

	Appendix A: ASCII/Unicode Characters
	Appendix B: Flowchart Symbols
	Appendix C: Pseudocode Reference
	Appendix D: Answers to Checkpoint Questions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

