
1

Chapter 2

Designing a Program

When programmers begin a new project, they never jump right in and start writing code as the first step. They
begin by creating a design of the program. After designing the program, the programmer begins writing code
in a high-level language.

A language’s syntax rules dictate things such as how key words, operators, and punctuation characters can be
used. A syntax error occurs if the programmer violates any of these rules.

If the program contains a syntax error, or even a simple mistake such as a misspelled key word, the compiler
or interpreter will display an error message indicating what the error is.

Once the code is in an executable form, it is then tested to determine whether any logic errors exist. A logic
error is a mistake that does not prevent the program from running, but causes it to produce incorrect results.

If there are logic errors, the programmer debugs the code. This means that the programmer finds and corrects
the code that is causing the error. Sometimes during this process, the programmer discovers that the original
design must be changed. This entire process, which is known as the program development cycle, is repeated
until no errors can be found in the program.

The process of designing a program:

- Understand the task that the program is to perform.
The programmer studies the information that was gathered from the customer during the interviews and
creates a list of different software requirements.
A software requirement is simply a single function that the program must perform to satisfy the customer.
Once the customer agrees that the list of requirements is complete, the programmer can move to the next
phase.

- Determine the steps that must be taken to perform the task.
Once you understand the task that the program will perform, you begin by breaking down the task into a
series of logical steps (Algorithm) using Pseudo-code or Flowchart.

2

Pseudo-code:

Pseudo-code (fake code) is an informal language that has no syntax rules and is not meant to be compiled or
executed.

Example: Pay Calculating Program

Display "Enter the number of hours the employee worked."
Input hours
Display "Enter the employee's hourly pay rate."
Input payRate
Set grossPay = hours * payRate
Display "The employee's gross pay is $", grossPay

NOTE: Each statement in the pseudo-code represents an operation that can be performed in any high-level
language.

Flowcharts:

A flowchart is a diagram that graphically depicts the steps that take place in a program.

There are three types of symbols in the flowchart:
The ovals (terminal symbols); the Start terminal symbol marks the program’s starting point and the End
terminal symbol marks the program’s ending point.

The parallelograms; are used for both input symbols and output symbols.

The rectangles; are used as processing symbols.

NOTE: Each of these symbols represents a step in the program. The symbols are connected by arrows that
represent the “flow” of the program.

3

Output, Input, and Variables

Computer programs typically perform the following three-step process:
- Input is received
- Some process is performed on the input
- Output is produced

4

Displaying Screen Output:

Display "Kate Austen", "1234 Walnut Street", "Asheville, NC 28899"
Display "Kate Austen"
Display "1234 Walnut Street"
Display "Asheville, NC 28899"
Flowcharts?!!!

NOTE: In programming terms, a sequence of characters that is used as data is called a string.

Display "January", "February", "March"
Display "January ", "February ", "March"

Variables and Input:

Programs use variables to store data in memory. A variable is a storage location in memory that is
represented by a name.

Most programming languages require that you declare all the variables that you intend to use in a program.
A variable declaration is a statement that typically specifies two things about a variable:
- The variable’s name
- The variable’s data type

Data Types:

- A variable of the Integer data type can hold whole numbers.
- A variable of the Real data type can hold either whole numbers or numbers with a fractional part.
- A variable of the String data type can hold any string of characters.

NOTE: In addition to a String data type, many programming languages also provide a Character data type. The
difference between a String variable and a Character variable is that a String variable can hold a sequence of
characters of virtually any length, and a Character variable can hold only one character.

Declare Integer length
Declare Real grossPay
Declare String name
Declare Integer length, width, height

5

Example:

Declare Integer age
Display "What is your age?"
Input age
Display "Here is the value that you entered:"
Display age

Example:

Declare Real test1
Declare Real test2
Declare Real test3
Declare Real average

Set test1 = 88.0
Set test2 = 92.5
Set test3 = 97.0
Set average = (test1 + test2 + test3) / 3

Display "Your average test score is ", average

Variable Initialization:

Declare Real price = 49.95
Declare Integer length = 2, width = 4, height = 8

What about?!!!

Declare Integer i
Set i = 3.7

Declare Integer i
Set i = 3.0

Declare Real dollars
Set 99.95 = dollars

6

Performing Calculations:

Be careful: Integer Division

In Java, C++, C, and Python, the / operator throws away the fractional part of the result when both operands
are integers. In these languages the result of the expression 3/2 would be 1. In Visual Basic, the / operator
does not throw away the fractional part of the answer. In Visual Basic, the result of the expression 3/2 would
be 1.5.

Named Constants:
A named constant is a name that represents a value that cannot be changed during the program’s execution.
Constant Real INTEREST_RATE = 0.069

7

Block Comments and Line Comments

Block comments take up several lines. They often appear at the beginning of a program, explaining what the
program does, listing the name of the author, giving the date that the program was last modified, and any
other necessary information.

// This program calculates an employee's gross pay.
// Written by Matt Hoyle.
// Last modified on 12/14/2010

Line comments are comments that occupy a single line and explain a short section of the program.

// Calculate the interest.
Set interest = balance * INTEREST_RATE

Input age // Get the user's age.

8

Chapter 3

Remember: a program is a set of instructions that a computer follows to perform a task.

Most programs perform tasks that are large enough to be broken down into several subtasks. As a result,
programmers usually break down their programs into modules.

A module (procedure, subroutine, subprogram, method, function) is a group of statements that exist within a
program for the purpose of performing a specific task.

So, instead of writing a large program as one long sequence of statements, it can be written as several small
modules, each one performing a specific part of the task. These small modules can then be executed in the
desired order to perform the overall task.

9

Benefits of Using Modules

Simpler Code
Several small modules are much easier to read than one long sequence of statements.

Code Reuse
If a specific operation is performed in several places in a program, a module can be written once to perform
that operation, and then be executed any time it is needed.

Better Testing
Programmers can test each module in a program individually, to determine whether it correctly performs its
operation.

Faster Development
Modules can be written for the commonly needed tasks, and those modules can be incorporated into each
program that needs them.

Easier Facilitation of Teamwork
When a program is developed as a set of modules that each performs an individual task, then different
programmers can be assigned the job of writing different modules.

Defining & Calling a Module

A module’s name should be descriptive enough so that anyone reading your code can reasonably guess what
the module does.

Module names cannot contain spaces, cannot typically contain punctuation characters, and usually cannot
begin with a number.

A module definition has two parts: a header and a body. The header indicates the starting point of the
module, and the body is a list of statements that belong to the module.

10

When a module is called, the computer jumps to that module and executes the statements in the module’s
body. Then, when the end of the module is reached, the computer jumps back to the part of the program that
called the module, and the program resumes execution at that point.

NOTE: The main module is the program’s starting point, and it generally calls other modules. When the end of
the main module is reached, the program stops executing.

Flowcharting a Program with Modules

In a flowchart, a module call is shown with a rectangle that has vertical bars at each side. The name of the
module that is being called is written on the symbol.

11

Programmers commonly use a technique known as top-down design to break down an algorithm into
modules.

The process of top-down:
- The overall task that the program is to perform is broken down into a series of subtasks.
- Each of the subtasks is examined to determine whether it can be further broken down into more subtasks.
This step is repeated until no more subtasks can be identified.
- Once all the subtasks have been identified, they are written in code.

Hierarchy Charts
A hierarchy chart (structure chart) shows boxes that represent each module in a program. The boxes are
connected in a way that illustrates their relationship to one another.

Local Variables

In most programming languages, a variable that is declared inside a module is called a local variable. A local
variable belongs to the module in which it is declared, and only statements inside that module can access the
variable.

12

Passing Arguments to Modules

Sometimes it is useful to call a module and send one or more pieces of data into the module. Pieces of data
that are sent into a module are known as arguments. The module can use its arguments in calculations or
other operations.

13

Passing Multiple Arguments

14

Global Variables & Constants

A global variable is a variable that is visible to every module in the program. In most programming languages,
you create a global variable by at the top of the program.

15

A global constant is a named constant that is available to every module in the program.

Most programmers agree that you should restrict the use of global variables, or not use them at all.
- Global variables make debugging difficult.
- Modules that use global variables are usually dependent on those variables. If you want to use such a module
in a different program, most likely you will have to redesign it so it does not rely on the global variable.
- Global variables make a program hard to understand. A global variable can be modified by any statement in
the program.

16

Chapter 4

A control structure is a logical design that controls the order in which a set of statements executes.

A specific action is performed only if a certain condition exists. If the condition does not exist, the action is not
performed.

A single alternative decision structure: it provides only one alternative path of execution.

Combining decision structure:

17

A sequence structure nested inside a decision structure:

In Pseudocode:

In pseudocode we use the If-Then statement to write a single alternative decision structure.

Boolean Expressions and Relational Operators

18

Example:

NOTE: Make sure the If clause and the End If clause are aligned. Indent the conditionally executed statements
that appear between the If clause and the End If clause.

A dual alternative decision structure has two possible paths of execution - one path is taken if a condition is
true, and the other path is taken if the condition is false.

NOTE: Most programming languages allow you to compare strings (case sensitive). This allows you to create
decision structures that test the value of a string.

The uppercase characters “A” through “Z” are represented by ASCII values 65 through 90.
The lowercase characters “a” through “z” are represented by ASCII values 97 through 122.
0-9 as digits / characters [different ASCII values 48-57]
“ “ [ASCII value 32]

19

To test more than one condition, a decision structure can be nested inside another decision structure.

The Case Structure

The case structure is a multiple alternative decision structure. It allows you to test the value of a variable or an
expression and then use that value to determine which statement or set of statements to execute.

The first line of the structure starts with the word Select, followed by a testExpression. The testExpression is
usually a variable, but in many languages, it can also be anything that gives a value (such as a math
expression).

Inside the structure there is one or more blocks of statements that begin with a Case statement. The word
Case is followed by a value.

If the testExpression does not match any of the Case values, the program branches to the Default statement
and executes the statements that immediately follow it.

20

Logical Operators

The logical AND operator and the logical OR operator allow you to connect multiple Boolean expressions to
create a compound expression. The logical NOT operator reverses the truth of a Boolean expression.
Truth Tables

Short-Circuit Evaluation (AND, OR)

21

What about?!!!

If x < 20 AND x > 40 Then
Display "The value is outside the acceptable range."
End If

Boolean Variables

A Boolean variable can hold one of two values: true or false. Boolean variables are commonly used as flags,
which indicate whether specific conditions exist.

NOTE: Most programming languages have key words such as True and False that can be assigned to Boolean
variables.

22

Chapter 5

A repetition structure (loop) causes a statement or set of statements to execute repeatedly.

A condition-controlled loop: (While, Do-While, Do-Until)

It uses a true/false condition to control the number of times that it repeats.

The While Loop

A pretest loop, which means it tests its condition before performing an iteration.

While a condition is true, do some tasks.

23

NOTE: An infinite loop continues to repeat until the program is interrupted. Infinite loops usually occur when
the programmer forgets to write code inside the loop that makes the test condition false.

The Do-While Loop

A posttest loop, which means it performs an iteration before testing its condition. As a result, the Do-While
loop always performs at least one iteration, even if its condition is false to begin with.

24

The Do-Until Loop

A posttest loop, which means it iterates as long as a condition is false, and then stops when the condition
becomes true.

25

For Loop

It repeats a specific number of times.

26

NOTE: The amount by which the counter variable is incremented in a For loop is known as the step amount. By
default, the step amount is 1. Most languages provide a way to change the step amount (+ve, -ve).

27

What about a count-controlled loop using a While Loop?!!!

28

Can we count Backwards?!!!

Nested For Loop

29

Chapter 6

A function is a module that returns a value back to the part of the program that called it.

Like a regular module:
- A function is a group of statements that perform a specific task
- When you want to execute a function, you call it

Library Functions

Most programming languages come with library functions that have already been written (built into the
programming language).

The library functions are used to manipulate numbers and perform various math operations, to convert data
from one type to another, to manipulate strings … etc.

random function

The random function returns an integer value.

30

Writing Functions

31

Returning Strings

32

Returning Boolean

Example,
If isEven(number) Then

Display "The number is even."
Else

Display "The number is odd."
End If

sqrt function

The sqrt function accepts an argument and returns the square root of the argument.

33

pow function

The purpose of the pow function is to raise a number to a power.

Example,
Set area = pow (4, 2)

34

Formatting Functions

i.e.
Declare Real amount = 6450.879
Display currencyFormat(amount)

NOTE: Many programming languages today support localization, which means they can be configured for a
specific country. In these languages a function such as currencyFormat would display the correct currency
symbol for the country that the program is localized for.

length function

The length function returns the length of a string. It accepts a string as its argument and returns the number of
characters in the string – Integer.

append function (concatenation)

The append function accepts two strings as arguments, string1 and string2. It returns a third string that is
created by appending string2 to the end of string1.

toUpper and toLower functions

The toUpper and toLower functions convert the case of the alphabetic characters in a string.

35

substring function

The substring function typically accepts three arguments: (1) a string that you want to extract a substring
from, (2) the beginning position of the substring, and (3) the ending position of the substring.

NOTE: The first character in a string is at position 0

36

contains function

The contains function accepts two strings as arguments. It returns True if the first string contains the second
string; otherwise, the function returns False.

37

Chapter 7

Garbage In, Garbage Out

If a program reads bad data as input, it will produce bad data as output. Programs should be designed to reject
bad data that is given as input.

38

Chapter 8

Remember: A Variable can only hold one value at a time.

So, what do you need to store and process a list of data of the same type?!!!

An array allows you to store a group of items of the same data type together in memory (i.e. names, grades,
salaries, addresses, date of births …etc.).

Processing a large number of items in an array is usually easier than processing a large number of items stored
in separate variables.

Most programming languages allow you to create arrays, which are specifically designed for storing and
processing lists of data.

An array is a named storage location in memory.

NOTE: You cannot store a mixture of data types in an array.

Example:
Declare Integer units[10]
Declare Real salesAmounts[7]
Declare String names[50]

OR,

Constant Integer SIZE = 10
Declare Integer units[SIZE]

The units array has 10 elements. Each element is assigned a subscript that starts from 0 to SIZE-1.

39

Assigning Values to Array Elements

Example:
Constant Integer SIZE = 5
Declare Integer numbers[SIZE]
Set numbers[0] = 20
Set numbers[1] = 30
Set numbers[2] = 40
Set numbers[3] = 50
Set numbers[4] = 60

40

Array Initialization

Most languages allow you to initialize an array with values when you declare it.

off-by-one Error

// This code has an off-by-one error.
Constant Integer SIZE = 100;
Declare Integer numbers[SIZE]
Declare Integer index
For index = 1 To SIZE - 1
Set numbers[index] = 0
End For

// ERROR!
For index = 0 To SIZE
Set numbers[index] = 0
End For

41

The For Each Loop

Several programming languages provide a specialized version of the For loop that is known as the For Each
loop.

The For Each loop can simplify array processing when your task is simply to step through an array, retrieving
the value of each element.

The first time the loop iterates, var will contain the value of array[0], the second time the loop iterates var will
contain the value of array[1] … etc.

Example:
Constant Integer SIZE = 5
Declare Integer numbers[SIZE] = 5, 10, 15, 20, 25
Declare Integer num

For Each num In numbers

Display num
End For

Sequentially Searching an Array

The sequential search algorithm is a simple technique for finding an item in an array. It steps through the
array, beginning at the first element, and compares each element to the item being searched for. The search
stops when the item is found or the end of the array is reached.

42

43

Copying an Array

Constant Integer SIZE = 5
Declare Integer firstArray[SIZE] = 100, 200, 300, 400, 500
Declare Integer secondArray[SIZE]
Declare Integer index

For index = 0 To SIZE – 1

Set secondArray[index] = firstArray[index]
End For

Passing an Array as an Argument to a Module or Function

Most languages allow you to pass an array as an argument to a module or a function.

Passing an array as an argument typically requires that you pass two arguments:
(1) the array itself, and
(2) an integer that specifies the number of elements in the array.

Parallel Arrays

By using the same subscript, you can establish relationships between data stored in two or more arrays.

44

Two-Dimensional (2D) Arrays

When processing the data in a two-dimensional array, each element has two subscripts: one for its row and
another for its column.

Example:
Constant Integer ROWS = 3
Constant Integer COLS = 4
Declare Integer values[ROWS][COLS]

45

Most languages allow you to initialize a two-dimensional array with data when you declare the array.

Arrays of 3D or More Dimensions

Most languages allow you to create arrays with multiple dimensions.

Example:
Declare Real seats [3][5][8]

